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A Bent for Magic  
PAUL C. PASLES 

Villanova University 
Villanova, PA 19085 

paul.pasles@villanova.edu 

A semi-magic square of order n is an n x n matrix with constant sum along each of its 
n rows and n columns. When the two main diagonals also share that same sum with the 
rows and columns, the square is called .fUlly magic. A Franklin magic square, on the 
other hand, is a semi-magic square whose four main "bent rows" share the same sum 

as the rows and columns, as in the figure below. Each of these three concepts (semi-, 
fully, and Franklin) has been abbreviated as magic square at various times by different 
authors, but the meaning is usually clear from context. Finally, a single row, column, 
diagonal or bent row of a square ma:trix is called magic if its sum is equal to S = nc, 
where c is the average of all entries in the matrix and n is the number of rows. 

Of course things get trickier when we require that entries be distinct, m particular 
when these are the first n2 positive integers. One could use instead some other set, like 
a subset of the primes, and still other variations are possible [12, 14, 15]. A silly but 
popular diversion long ago was to find all fully magic squares of consecutive integers 
for which the magic sum matched the current year. More serious research has tied 
magic squares to geometry, vector analysis, group theory, and experimental design. 

The Franklin magic squares are named for Benjamin Franklin, who coined the term 
bent row and who was the first to intentionally incorporate bent rows into his squares. 
We address some questions raised by a recent historical article [7]: When are the vari
ous types of squares pos�ible, how prevalent are they, and what are their mathematical 
properties? Are there any new clues as to how Ben Franklin went about his construc
tions? In the process we will consider his only known rough notes on the subject, just 
recently discovered. 

With a little effort the current author concocted Franklin magic examples for 
n = 4, 5, 6 (see FIGURE 1, below) . These are natural squares, that is, the entries 
are 1, 2, . . .  , n2• Two of them (a and c) are also vertically symmetric, meaning 
a;,j + an+l-i,j is constant. FIGURE 1(b), meanwhile, proves the existence of odd
order Franklin magic squares. 

8 1 12 
14 2 11 
3 15 6 
9 16 5 

(a) 

13 4 7 10 19 25 1 14 25 8 
7 20 1 14 22 8 24 33 11 30 

10 12 15 13 16 9 5 21 20 19 
4 6 24 11 3 21 32 16 17 18 

23 18 17 '5 2 13 4 26 7 
36 23 12 29 

(b) 
(c) 

Figure 1 Some Fran k l i n  magic squares 

28 35 
3 10 

15 31 
22 6 
34 27 
9 2 
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Benjamin Franklin's own magical creations far surpassed these simple examples in 
many ways. Some of his squares were largely hidden from public view until a recent 
paper reintroduced them [7]. That article focused on the history of these squares, and 
now we consider some of the mathematics behind them. 

FIGURE 2 shows three of Ben Franklin's magic squares, of orders 6, 8 ,  and 1 6. Other 
examples can be found at http : //www.pasles.org/Franklin.html and in [7]. In FIGURE 
2(c), a 1 6-square that was published on Franklin's behalf by an English acquaintance 
in 1767 (and which has appeared before in this MAGAZINE [1]), the chevron-shaped 
bent row is shown along with 3 of its 1 5  vertical translates. In general, if every bent 
row of a Franklin magic square can be translated in the direction of its vertex without 
changing its sum, the square is called panfranklin. That is, the bent rows shaped like v 
and 1\ can be shifted up and down, while those oriented as > and < can be shifted to the 
left and right, for a total of 2n bent rows all sharing the same sum. This is analogous 
to the pandiagonal magic square, wherein the two main diagonals of a fully magic 
square can be translated up or down to 2n positions without affecting the "magic . "  
FIGURE 2(b) and (c) are panfranklin, since each n x n example has 4n bent rows that 
sum equally; other properties are considered in separate articles [3, 5, 6, 7]. F IGURE 
2(a) is not panfranklin, because some of the 4n bent rows fail to be magic. 

We will investigate the structure of the Franklin magic and panfranklin squares, 
further illuminating the work of the master. We begin by showing that his examples 
were the best ones possible ! 

25 40 57 72 89 104 

(b) (c) 
Figure 2 Vintage 18th century magic squares with constant sum (or magic sum) of 
(a) 111 (b) 260 (c) 2056 

The panfran k l i n  squares 

Fact Franklin himself actually found a minimal example, in the following sense: 
As far as we can tell ,  he was interested exclusively in squares of even order, and the 
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smallest even order for which natural panfranklin squares exist i s  8. Let's see why. 
Write A H for the horizontal reflection of A, meaning that the columns of A have been 
reordered last-to-first; A v for the vertical reflection; and A 1 for the transpose. Note 
that A v = ((A T)H)T and put A HV = (A H) v. Finally, In denotes the n x n matrix of 
ones. Using this notation, we can show that for small orders, panfranklin squares can 
be decomposed into building blocks in such a way that all of the entries must repeat, 
and that they do so in a very regular and obvious fashion. Therefore no natural example 
is possible in those orders , and the reason can be seen with the naked eye. 

THEOREM . Let 2 .::=: n .:::: 6 and let M be an n x n matrix whose average entry is c. 
M is panfranklin of order n if and only if there exists an Ln/2J x Ln/2J matrix A such 
that 

depending on the parity of n. Thus the smallest even order in which panfranklin 
squares without repeated entries can exist is n = 8. 

The "if" direction is easy to prove: since 1, and the parti tioned matrix have the 
desired summatory properties, so does their l inear combination M. The "only if" part 
is a l ittle bit tougher. For n = 2 and 3 the proof is sti l l  a straightforward exercise by 
hand. For n = 4, 5, and 6 the panfranklin properties can be viewed as 6n equations in 
n 2 variables, where the variables are the entries of M. (Each equation has n nonzero 
coefficients , and those coefficients are all equal to 1 . ) The system of equations can be 
solved using technology. 

An immediate consequence of the theorem is that for small orders, any panfranklin 
examples necessarily are vertically and horizontally symmetric. Thus every entry ap
pears at least twice! This establishes the minimality of Franklin's results: since n = 2,  
4, and 6 are not options, he had to start with n = 8 to get a panfranklin square that 
used the entries I , 2, . . .  , n2 • 

The theorem's characterization fails in general for higher orders than 6-more pre
cisely, the theorem holds in the "if" direction only-as can be seen by the panfranklin 
7-square we have devised below. This ,  then, i s  the smallest order for which examples 
with a distinct entry set can be constructed. Whether natural examples exist in order 7 
is unknown; if not, then Franklin 's  8-squares are minimal in an even stronger sense! 

42() 541 41 1 51 2 658 102 342 
387 275 619 21 5 1 �  688 682 
519 435 251 664 576 444 1 01 

381 441 440 428 129 702 475 

324 443 574 479 � 300 481 

482 559 262 354 701 1 00  448 
473 3J2 433 344 497 480 467 
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By the theorem, then, Benjamin Franklin did find panfranklin squares of minimal 
even order. Was he aware of the fact? As with so much of what he did, we cannot 
know for sure . He may have known that smaller orders would not work, or there might 
have been some trial-and-error, or it may simply be a coincidence that he came up 
with examples of order 8. There is, however, one tantalizing bit of evidence to suggest 
that the theorem was indeed known to him, namely this :  By altering just slightly the 
format in the theorem (a partitioned matrix added to the appropriate multiple of In), it 
is possible to describe every single one of his six known examples ! 

Incidentally, it also follows from the theorem that for orders up to 6, the matrix 
product of panfranklin squares is again panfranklin. Suppose that the order is even. 
Then we can multiply using the form given in the theorem, as follows. 

] + k lzp } {[ _ � v 
��: ] +llzp } 

��: ] [ -�v ��: ] + [ A 
-Av 

= [ 
= [ 

AB+AHBV 
-A v B- (AV)H Bv 

2AB 
-2AvB 

[ AB 
= 2 

-(AB)v 

where we have used the identities AH Bv = AB, ABH = (AB)H, and A v B = (AB)v, 
as well as the fact that J C = C J = 0 (the zero matrix) for any semi-magic C with 
zero sum. The proof for odd order is quite similar. • 

Here is another corollary, of an algebraic nature : If Pn is the vector space of real pan
franklin squares, allowing repeated entries, then P2 :::: P3 and P4 :::: P5 but P6 1=- P7• 
Observe also that for 2 :S n :S 6, not only do we have the usual vector space struc
ture common to every type of 'magic ' square, but we have also proven closure under 
multiplication . Thus Pn is an associative algebra. 

Th e case n = 4 as a model  

Franklin seems to have followed the problem-solver's dictum that one should approach 
a difficult problem by looking first at a special case. As P6lya wrote, one can use 
"the less difficult, less ambitious, special, auxiliary problem as a stepping stone in 
solving the more difficult, more ambitious, general , original problem." [11, p. 1 96, 
emphasis his.] This strategy had served the earlier square-makers wel l ;  to take just one 
example, the fully magic 3-square was easily generalized to produce a method which 
works in any odd order. Likewise, I believe that Franklin used the n = 4 case as a 
template. 
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Admittedly, there is little direct evidence to support that claim. Indeed, not a single 

completed example survives to indicate that Franklin ever drew a bent-row square of 
order 4. But there is considerable circumstantial evidence in favor of this hypothesis. 

Of an 8-square [7], Franklin once wrote that the "four corner numbers, with the 
four middle numbers" add up to the magic sum. It's curious that he commented only 
on those particular eight cells (shaded in the diagram below) and not on the much 
stronger property of his 8-squares, that every 2 x 2 block, or square submatrix, is equal 
to half the magic sum. Of the 16-square in FIGURE 2(c), he observed likewise "that 
a four-square hole being cut in a piece of paper" placed..atop it would show a 4 x 4 
submatrix that possesses the magic sum [7]. Again, why did he not remark instead on 
its more general 2 x 2 block property, in this case that every such block totals to one

quarter the magic sum? We might conjecture that this is because not all of his squares 
satisfied the stronger conditions. Very few examples by Franklin do survive, but these 
include FIGURE 2(a), a magic square that may indicate what weaker properties he was 
willing to accept. Here is a bit of block magic common to all of Franklin's surviving 
examples: 

Property A. An even order square, be it Franklin magic or fully magic, natural or 
not, is said to have Property A if the four comer cells and the four middle cells both 
sum to 4Sjn: 

= L2i,2je(n,n+2) aij = 4Sjn. 

= 4Sfn. 

That is, each set of four cells is proportionally magic: its sum is equal to 4c, where c 
is the average value of all entries in the matrix. Another commonly satisfied condition 
involves bent rows: 

Property B. A Franklin magic square of order n (natural or not, with n even or odd) 
is said to have Property B if these four parallel bent rows are magic: 

As with the main bent rows, one of these is redundant. That's because B4 = B 1  + 
B2 - B3 . 

And now for the promised circumstantial evidence. We have claimed that the 
4-square served as Franklin's model. Are there good reasons for believing so? Yes, 
here are seven of my favorites: 

• Property A holds automatically in every Franklin (or fully) magic square of order 
4, but it does not always hold in higher orders. Nevertheless, all of Franklin's own 
examples satisfy this condition .. While most of his squares possess the stronger block 
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property-every 2 x 2 block is proportionally magic-Franklin's 6- and 4-squares 
do not, yet Property A is still common to all of them. Indeed, even when the more 
impressive block property is present, Franklin only bothers to mention explicitly the 
weaker Property A. Clearly he thought it important. Perhaps this was an integral 
part of all of his standard techniques, though with such a small portion of the corpus 
surviving it is impossible to say for sure. 

• Although Property B holds for every Franklin magic square of order 4, it is hardly 
automatic in higher orders, for example in FIGURE I (b,c) . Nevertheless, all of 
Franklin's own examples satisfy this condition, with a single exception that i s  not 
Franklin magic anyway. Indeed, the only magic parallel bent rows common to every 
Franklin square drawn by the man himself are the main four and the ones described 
in Property B. Again, it's as if the 4-case, of which we have no surviving Frankl in 
magic examples, was a template on which he based all of his squares. 

• Four is the smallest order for which Franklin magic squares with distinct entries 
exist, so their construction would be an obvious first step . 

• As far as we can tel l  from the surviving papers , Franklin worked in even orders only. 

• Most of Franklin's squares have an additional property: bent rows can be translated 
"against the grain ."  That is ,  one might shift the v-shaped and /\-shaped bent rows 
right or left (instead of up and down) by an even number of cells and still obtain 
the magic sum. (When a pattern is shifted over one edge of the square, you are to 
assume it continues from the opposite edge. In this sense, that magic square is real ly 
a torus . )  This is true of 2(c) , for example, and it also works for the transpose of (b) . 
It i s  only absent from one of Franklin's bent-row squares, namely, 2(a) . This strange 
attribute seems to be part and parcel of whatever general methods Franklin had at 
his disposal . And again, it is automatic in the 4-case; there, it's just another way to 
describe Property B .  I have conjectured that such shift-invariance was motivated by 
the fact that Franklin also drew magic circles [5, 6, 7] . 

• Some of Franklin's magic squares can be partitioned into 4-squares that themselves 
satisfy most of the Franklin magic properties. Once again, a 4 x 4 matrix seems to 
have been in the back of his mind. Franklin's own comments bolster this argument; 
recall the "four-square hole. "  

• Franklin seems to  have spent considerable time experimenting with squares of  order 
4 at various times in his life. The construction of one particular 4-square, he wrote 
in 1765, was an arduous task, the implication being that the creative process took 
some time [7] . And there is another instance of experimentation with the 4-case that 
I discovered recently-the image itself to be unveiled in my forthcoming book on 
Franklin and his squares. Aside from supporting the 4-square hypothesis, thi s new 
example (an incomplete rough sketch) also indicates that Benjamin Franklin was 
sti l l  writing magic squares much later in life than could be proven previously. (Also 
to be revealed: what really inspired him to draw squares in the first place. )  

Though Franklin's general method remains a mystery, then = 4 case was truly a "step
ping stone " to higher orders . Suffice to say, order 4 seems to have been very important. 

How hard is  it to build a Franklin square? That question is ill-defined, but we should 
have better luck with a related one: How many Franklin squares are there of given 
order? In particular, are they more numerous than their fully magic brethren, or less so? 
The answer, in general, is neither. Intuitively, two diagonal conditions should impose 
less restriction than three (independent) bent-row conditions, but as we shall see, that 
isn't necessarily the case. 
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Order four: combinatorics and algebra 
The n = 4 case is notable for other reasons as well. 

Property C. A square matrix of order 4 is said to have Property C if the four cell-pairs 
below share the same sum. 

Every Franklin magic square of order 4, natural or not, automatically has Property 
C. This can be seen by comparing the four straight rows with the top and bottom bent 
rows, and then applying Property A. As an amusing exercise, you can prove our first 
theorem for the case n = 4 using Property C. 

One property oft-prized by mathemagicians is the quality of being associated: The 
sum of the (i ,  j) and (n + 1 - i ,  n + 1 - j) cells is constant. Natural Franklin magic 
4-squares are never associated, but they do display pretty symmetries of another sort. 
These come in three flavors. 

Trichotomy law. Every natural Franklin 4-square displays one of the symmetries 
shown in FIGURE 3, allowing for transposition. Here xc denotes the complement of 
x, namely, xc = 17 - x. 

a b c d a b c d a b c d 

e f g h e f g h be ac de cc 
ec fC gC he ac be cc de r ec he gC 
ac be cc de ec fc gc he e f g h 

Type 1: vertically symmetric Type II: shift-symmetric Type III: fully magic 
Figure 3 Symmetries of the natural Frankl in magic squares of order 4 

This distinction into types has some algebraic significance. Interestingly, in higher 
orders such symmetries are still possible, but no longer necessary. Trichotomy makes 
it easier to count 4-squares, though the mathochist may still prefer to generate them 
via brutish force. 

Proof of the Trichotomy Law We may assume that a 1�, a1 2 , or az2 is equal to 1 ,  
where aij denotes the i ,  jth entry of the matrix. The remaining possibilities can be 
produced from these by rotation or reflection. Define the transformations p, a as fol
lows. 
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p = interchange first two columns, then interchange last two columns 

u =the commutator of p and r, where r is the ordinary transpose: u = prp-1r-1• 

By Property B, we know that p, and therefore u = (pr)2, are bijections from the set 
of natural Franklin magic 4-squares onto itself, and that each map preserves type (I, 
II, or III). Then since p exchanges au with a12, and u exchanges au with a22, we 
need only check that trichotomy holds when au = 1. Now, transposing if necessary, 
we can assume that 1c = 16 does not appear in the upper triangle of the matrix. If 
16 = a22• then according to the bent row sums, au+ a22 = a23 + a14 = a33 + a44 = 
a32 + a41 = 17, and so the matrix is also fully magic with each half-diagonal composed 
of a complementary pair. 

a d 
ae de 

ee he 

e h 

That still leaves four complementary pairs to be placed somehow in the remaining 
eight spaces. However, no such pair can appear in the same row or column, else the 
remaining entries in that row or column would themselves be complementary (at odds 
with the placements already established). Under these restrictions, we claim that at 
least one of the remaining pairs must be diagonally adjacent (for example a�1  = a12). 
For, otherwise all four pairs would be placed in such a way as to avoid sharing a 
diagonal adjacency, a row, or a column, and while there are seven essentially different 
ways of doing so: 

j k j k j k j k 
ke me l me me l e le me 
je le m le je m je ke 

l m ke l ke l l m 

j k j k j k 
me le ke m le me 
je ke je l ke je 

l m le me m l 

each of them leads to a contradiction by virtue of Property B. (For example, in the first 
diagram one would obtain 

j + kc + f + f = 34 = k + me + ec + m ,  

and so 34 - k + f = 34 - f + k, which results in a repeated entry, f = k.) This proves 
that at least one complementary pair must be diagonally adjacent; and therefore all 
four of them are, by Property B. Thus whenever a22 = 16, we have a magic square of 
Type III. If 16 = a41, on the other hand, then it is clear from columns, bent rows, and 
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Property A that the matrix is vertically symmetric, Type I. If 1 6  = a3 h then Property 
C implies that 

34 = (a31 + a34) + (a32 + a33) = (a31 + a34) + (a, , + a14) 
= 1 6  + a34 + 1 + a14 = 1 7  + (a,4 + a34), 

so that a,4 + a34 = 1 7 ;  thus the first and last columns have shift-symmetry, and some 
tedious calculations give that the entire matrix is shift-symmetric, Type II. By similar 
machinations, one can verify that 1 6  � {a21, a32, a33, a42, a43, a44}. • 

Thus, the question of enumeration comes down to the case where a11 = 1 .  With a 
simple computer program (or else pencil, paper, and a boring Saturday afternoon) you 
can use the trichotomy rule to find that there are 228 four-squares with a11 = 1 ,  not 
counting reflections. 

COROLLARY. There are 9 1 2  natural Franklin magic squares of order 4, up to ro
tation and reflection. 

Here is one way to count them. Let A;i be the set of natural Franklin magic 
4-squares with a;j = 1 .  We know that I A 111 = 2(228) ,  since each element of A 11 has 
a transpose which is also in A 11• Likewise A22 is closed under transposition, while 
A 12 is not. Note that p is a bijection from A12 onto A 11, and a is a bijection from A22 
onto A 11, so we have I A 11 I = I A 121 = I A 221. Thus if we do not count rotations and 
reflections, the number of natural Franklin magic squares of order 4 is 

�IA11I +lAd+ �IA22I = 21AIII = 4(228) = 9 1 2 . 

TABLE 1: Enumeration of natural squares (up to rotation and reflection) 

Order 2 3 4 5 6 

fully magic 0 1 880 275305224 unknown 
Franklin magic 0 0 9 1 2  unknown unknown 
pan diagonal 0 0 48 3600 0 
pan franklin 0 0 0 0 0 

The first and third rows of this table are taken from The On-Line Encyclopedia of 
Integer Sequences [13] . 

Powerful new methods have been developed that provide an upper bound for an 
important subclass of the 8 x 8 panfranklin squares, but more precise results are still 
lacking. 

The vertically symmetric squares, which appear naturally in the n = 4 case, 
were defined for arbitrary entry-sets by demanding that the sum of the (i, j) and 
(n + 1 - i, j) cells be constant. Here is an algebraic result regarding Franklin squares 
of arbitrary order, generalizing an exercise that appeared in Math Horizons (3] .  

PROPOSIT ION .  Let n � 4 .  Consider the set of n x n Franklin magic squares 
with real entries, not necessarily distinct. The subset of vertically symmetric squares 
is a noncommutative ring under ordinary matrix addition and a product given by 
A* B := A(Br) .  Furthermore, the map A f----3> (magic sum of A) is a surjective ring 
homomorphism. 

Thus the magic sum is both additive (like the trace) and multiplicative under * (like 
the determinant) . The proposition still holds if we replace lR by any commutative ring. 
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A last word on the 4-case: While the trichotomy law does not hold for higher orders, 
it does illustrate the importance of placement of complementary pairs-and that is 
something Franklin exploited in every one of his squares. That's a little more evidence 
for the " 4  as a model" hypothesis. 

Journey to the third dimension 
No article on the art of magic squares would be complete without a nod to the Cubist 
school. 

When magicians tire of the plane, they tum to higher dimensions. How can we apply 
this approach to the current discussion? Shown below is a natural 4-cube in which each 
slice-from the 4 cross-sections shown to the 8 not pictured-is Franklin magic. 

Indeed, there is a little extra magic, free with every such Franklin magic cube of 
order 4: One can even slice the cube diagonally (pictured below), and many of the 
resulting bent rows are guaranteed to sum magically. This is so despite the fact that 
this diagonal cross-section is not even nearly a magic square, for the rows work, but 
the columns do not. 

64 42 21 3 

55 29 34 12 

56 30 33 II 

63 41 22 4 

The author believes this to be the first time anyone has bothered to construct a 
Franklin magic 4-cube. (Some partial successes for orders 4 and 6 have been published 
over the past century, but these were always deficient in various particulars, with some 
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faces and other parallel slices lacking a bent row here or there.) In fact, many such 
examples are possible. For the interested novice: 4-cube constructions are made easier 
by good old Property C (diagram below). 

Figure 4 Some constant pair-sums that are automatic for any Franklin magic 4-cube 

We have seen that there exist natural Franklin magic squares and cubes of order 4. 
What about tesseracts and other, higher-dimensional objects? Here is a conjecture, not 
for the faint of heart: If there exists a natural Franklin magic hypercube of order n and 
dimension k, then n :=:: 3 + Lk/2J. 

For investigators who seek to understand how Ben Franklin constructed his own 
magic squares we offer one final hint. Convert his 8- and 1 6-squares to octal and hex
adecimal notation, respectively, then subtract 1 from each entry. Consider only the first 
(or second) digit of the resulting matrix .  The results will surprise you! 
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Brick-packing problems In a packing problem we must arrange a given collection 
of geometric objects in a nonoverlapping configuration to fill some larger object com
pletely. Packing problems can be. challenging even when only a few simple shapes are 
involved. For example, several innocuous-looking, but fiendish 3-dimensional packing 
problems were devised by J. H. Conway [23]. Tiling problems (2-dimensional packing 
problems) studied in the ancient world include tangrams in China and a conundrum of 
Archimedes, whose resolution merited a front page article in the New York Times in 
2003 [25]. Jigsaw puzzles are familiar instances of more recent tiling problems. The 
packing problems most studied by mathematicians concern polyominoes-finite sets 
of rookwise-connected unit cells in an infinite chessboard-and their generalizations 
to higher dimensions. 

In this article, we examine packings of rectangular boxes with rectangular bricks. 
Even in this basic case the problems that arise are interesting and difficult. We treat 
d-dimensional bricks and boxes, including those whose edge lengths are not integers, 
and answer the following questions as we introduce our packing theorems and con
structions. 

QUESTIONS. Is it possible to 

(A) tile a 37 x 32 rectangle with 5 x 5, 3 x 3, and 2 x 2 squares? 

(B) tile a 1 6  x 1 5  rectangle with 6 x 1 rectangles? 

(C) tile a .J4050 x .J%8 rectangle with .JT62 x .J50 rectangles? 

(D) pack a 1 2  x 1 2  x 1 1  box with 4 x 4 x 4 and 3 x 3 x 3 cubical bricks? 

(E) tile a 39 x 1 6  rectangle with 3 x 3 and 2 x 2 squares? 

(F) pack a 720 x 200 x 1 00 box with 1 5  x 1 2  x 1 0  bricks? 

16 

15 ? 
. 

Figure 1 An attempt to answer Question (B) 

To provide an affirmative answer to any of these questions we need only exhibit the 
requested packing or tiling. The reader has perhaps already found constructions for (A) 
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and (D). Establishing a negative answer to a packing problem is often more difficult. 
FIGURE 1 shows an unsuccessful attempt to tile a 16 x 15 rectangle with 6 x 1 tiles. 
Further experimentation suggests that the tilings requested in (B), (C), and (E) do not 
exist, but it is not obvious how to confirm our suspicions without a brute-force, case
by-case search. Even a computer-search is daunting for (F), where 8000 bricks are to 
be placed. A central endeavor in the study of packing problems is the discovery of 
general nonexistence theorems that eliminate the need for brute-force attacks. 

The following definitions are likely already clear from the preceding discussion. A 
d-dimensional rectangular box or brick of size v1 x v2 x · · · x vd is a set congruent 
to 

{(x1 , x2, .. .  ,xd) E !Rd: 0 �X; � v; for i = I, 2, . . .  ,d}. 

An integer brick is one whose edge lengths v 1 ,  v2 , . • .  , vd are all integers. We use 
the term pack in the following sense: The union of the bricks must be the entire box, 
and the interiors of the bricks must be pairwise disjoint. In a packing, the edges of the 
bricks must be parallel to the edges of the box. In the 2-dimensional case we find it 
more natural to speak of rectangles that tile rectangles, and we sometimes refer to the 
bricks as tiles. 

In Question (B), we tacitly assumed that we could rotate the 6 x 1 rectangles and 
place them in either orientation. However, it will be advantageous to forbid such rota
tions. We restrict our attention to packings with translates of a given set S of bricks. 
This is not a severe restriction as we may augment S to include the desired orientations 
of a particular brick. Here is the general problem we study. 

B RICK-PACKING PROBLEM.  Which boxes can be packed by translates of a given set 
of d -dimensional bricks? 

We seek necessary and sufficient conditions for a packing, say, in terms of the edge 
lengths of the box and the given bricks. The Brick-Packing Problem is hopelessly dif
ficult in full generality, and research has focused on the special cases involving a small 
number of integer bricks. In these situations the necessary and/or sufficient conditions 
for a packing usually hinge on divisibility conditions among the edge lengths of the 
bricks and box. 

The partition-and-pack strategy Packings of a box with translates of one brick 
are readily characterized. We say that the z1 x z2 x · · · x Zd box is a multiple of the 
v1 x v2 x · · · x vd brick provided z; /v; is an integer for i = 1, 2, . . .  , d. The following 
observation is clear, as illustrated in FIGURE 2. 

OBSERVATION. The d-dimensional box R can be packed by translates of a given brick 
B if and only if R is a multiple of B .  Moreover, any such packing is unique. 

/ / / / / 
/ / / / / / 

/ / 
/ / 
/ 

Figure 2 Packing a box with translates of one brick 
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Although the Brick-Packing Problem is not very interesting when we use translates 
of one brick, packings like the one in FIGURE 2 serve as the key building blocks when 
we solve more complex problems using a type of divide-and-conquer strategy: 

PARTITION-AND-PACK STRATEGY. To pack the box R with translates of some given 
bricks we partition R into sub-boxes, each of which is a multiple of a brick. 

We prefer to use a small number of sub-boxes in carrying out a partition-and-pack 
strategy. 

Two themes and a preview Two themes run throughout this article. First, we show 
how elementary combinatorial arguments can be used to establish strong necessary 
conditions for prescribed packings. Second, we use the partition-and-pack strategy to 
obtain sufficient conditions for packings . In some fortuitous situations, the necessary 
and sufficient conditions coincide. We avoid the wide array of sophisticated algebraic 
techniques for solving packing problems [1, 2, 9, 10, 30, 32, 33, 35] in favor of more 
elementary combinatorial methods. 

15 

12 

20 

1 5  

1 0  

22 

1 0  

1 0  

(a) 

++ ++ 
1 2  

----

8 

1 5  

++ ++ 

24 

++ ++ 
1 2  

++ 
--

++ 

++ 

++ ++ 
----

++ ++ 

++ ++ 
1 6  

(b) 

++ ++ ++ 
------

++ ++ ++ 

++ ++ ++ 

Figure 3 (a) Partit ion-and-pack strategy to t i le  a 37 x 32 rectangle. (b) Any 6 x 1 rect
angle encloses a net charge of -6, 0, or +6 

Let us illustrate our two themes by solving Questions (A) and (B) .  These solutions 
serve as a preview of much of the material to come. FIGURE 3(a) indicates a partition
and-pack scheme for the tiling requested in (A); each of the six sub-rectangles can be 
packed by a square of size 5 x 5, or 3 x 3, or 2 x 2. To prove that the tiling requested 
in (B) does not exist we consider the 16 x 15 rectangle in FIGURE 3(b) with unit posi
tive and negative charges in some unit cells, as shown. Any 6 x I or I x 6 rectangle in 
a putative tiling encloses a net charge of -6, 0, or +6, and thus the net charge enclosed 
by all the rectangles would have to be a multiple of 6. However, the 16 x 15 rectangle 
encloses a net charge of + 16, which is not a multiple of 6. 

An outline In Part I we present some preliminary results and treat the }-dimensional 
Brick-Packing Problem. In Part II we discuss and prove a recent theorem that com
pletely solves the Brick-Packing Problem for two (not necessarily integer) bricks; this 
theorem answers Questions (B)-(E). Our exposition here is somewhat different from 
the one in [5]. Erdos and Straus considered two general problems about tiling large 
rectangles (with (A) and (E) as special cases)[12]. In Part III we discuss the context 
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and history of these general problems and provide proofs for the theorems announced 
by Straus .  In Part IV we consider packings of a d-dimensional box with just one brick 
(where all d !  orientations of the brick are allowed) and also with translates of cubes 
of different sizes. There is a type of duality between these two situations, which we 
illuminate with a fundamental theorem from combinatorial matrix theory. 

PART 1: Pre l i m i n a r ies a n d  1-d i me n s i o n a l  pack i ngs 

The !-dimensional case of the Brick-Packing Problem deals with the packing of an 
interval by given intervals on the real line. The situation is familiar to schoolchildren 
who place colored rods end-to-end as a visual aid in learning how to add numbers . The 
conditions we obtain for !-dimensional packings will serve as necessary conditions for 
results in higher dimensions. 

Scaling We state an easy result without proof. 

SCALING LEMMA . Let r be a positive real number. Then there is a tiling of a z 1  x z2 
rectangle with translates of v 1 x v2 and w 1  x w2 tiles if and only if there is a tiling of 
an (rz 1 )  x z2 rectangle with translates of (r v 1 )  x v2 and (rw 1 )  x w2 tiles. 

The number r represents a scaling factor applied to all horizontal lengths.  There is 
a corresponding result for vertical scalings, as well as extensions to scalings in higher 
dimensions and packings involving more than two bricks. When we invoke any of 
these generalizations in our proofs, we simply refer to "a scaling argument ."  

We now answer Question (C). 

EXAMPLE .  It is impossible to tile a .J4050 x .J968 rectangle with .Jl62 x ,J50 rect
angles (with both orientations allowed). 

Reason. We scale the edge lengths by a factor of 1 I ../2 both horizontally and verti
cally and find that the requested tiling is equivalent to a tiling of a 45 x 22 rectangle 
with translates of 9 x 5 and 5 x 9 rectangular tiles. Assume there is such a tiling. Se
lect an edge of length 22 and let c1 and c2 be the number of 9 x 5 and 5 x 9 tiles, 
respectively, along that edge. Then 22 = 5c1 + 9c2 . However, it is easy to check that 
this equation has no solution in nonnegative integers c 1 and c2 . 

Counting We now generalize and formalize the counting argument in the example 
just given. Let the set of all nonnegative integer linear combinations of the real num-
bers Y1 , yz, ... , Yr be denoted by 

(YI, Yz, ... , Yr) = {c l Y 1 + CzYz + · · · + Cr Yr : ck = 0, 1 ,  . . .  for k = 1 ,  . . .  , t } .  
Thus we may say that i n  the above example the requested tiling does not exist because 
22 is not in the set ( 5 ,  9). More generally, we may count the bricks of each given type 
along one edge of a packed box and obtain the following necessary conditions for a 
packing. 

COUNTING LEMMA.  Suppose that the box R is packed by translates of t bricks. Let 
z be the length of one edge of R, and let the corresponding edge lengths of the bricks 
be y 1 , y2, . • •  , Yr· Then z is in the set (Y�> yz, ... , Yr). 

When we invoke this result, we simply cite "a counting condition. "  Counting condi
tions are not sufficient for a packing in general . For instance, 5 is in the set (2, 3) ,  but a 
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5 x 5 square cannot be tiled by 2 x 2 and 3 x 3 squares. However, for !-dimensional 
packings the counting conditions are sufficient, and we have the following answer to 
the problem of packing an interval with intervals .  

THEOREM I.  Let v1, v2, ... , v1, and z be positive real numbers. An interval of 
length z can be packed by translates of intervals of length v1, v2 • . . .  , V1 if and only if 
z is in (v1, v2, ..• , vi). 

Proof The counting lemma establishes necessity. Conversely, if z = c1 v1 + c2v2 + 
· · · + c1 v1, then we may partition an interval of length z into sub-intervals of respective 
lengths c1 v1, c2 v2 , .•. , c1 v1• Clearly, the kth sub-interval can be packed by ck intervals 
of length vk for k = 1, 2, . . .  , t, and thus the partition-and-pack strategy gives us the 
desired packing. • 

Intervals and integers: Frobenius and Sylvester Theorem 1 establishes the equiv
alence of the !-dimensional Brick-Packing Problem and a problem in additive num
ber theory, namely, determining whether the number z is in the set ( v1, v2, ... , v1). 
Throughout this section we assume that v1, v2, ..• , v1 are positive integers . In this 
case the set ( v1, v2, ••• , v1) is the subject of a notoriously difficult problem in number 
theory that was popularized by Frobenius. 

FROBENIUS  STAMP PROBLEM . Let v1, v2, .•• , V1 be positive integers with 

Find the largest integer n* = n*( v1, v2, ••• , v1 ) not in the set (v1, v2, •.• , v, ). 

If v" v2, . . . • v1 are the available denominations of stamps, then n* is the largest un
achievable postage. It is not difficult to verify that n*(7 , 3) = 1 1  and n*( 1 5 ,  10 ,  6) = 

29, for instance. The existence of the number n* follows by induction on t and a con
sequence of the Euclidean algorithm: For any two positive integers v1 and v2 there are 
integers b1 and b2 such that gcd( v1, v2 ) = b1 v1 + b2 v2• For t 2:: 3 no general closed 
formula for n* is known although several algorithmic schemes to compute n* have 
been devised. An applet of Beukers computes n* for t ::::: 4 and moderate values of the 
arguments [3] . (We rely on this applet for some of our computations later.) The liter
ature related to the Frobenius Stamp Problem and its variants is vast, and we refer the 
reader to the recent article by Owens as a starting point [29] . 

The Frobenius Stamp Problem may be recast in terms of !-dimensional packings. 
Intervals with relatively prime lengths v1, v2, ••. , v1 pack all sufficiently large integer 
intervals, and we are requested to find the length n* of the largest interval that cannot 
be packed. For t = 2 a result usually attributed to Sylvester [34] asserts that n* = 

v1 v2 - v1 - v2 (proofs have appeared in the MAGAZINE [28, 29] ) and gives us the 
following !-dimensional packing theorem. 

SYLVESTER ' S  THEOREM . If v1 and v2 are relatively prime, then each interval of 
length greater than v1 v2 - v1 - v2 can be packed by intervals of length v1 and v2• 

Thus all sufficiently large integer intervals can be packed by two given intervals 
whose lengths are relatively prime. We often have to settle for just such an asymptotic 
packing theorem-a result that holds only when the edge lengths of the box to be 
packed are sufficiently large. We say that a setS of d-dimensional integer bricks packs 
all sufficiently large boxes provided there is an integer N such that every integer box 
whose edge lengths are all strictly greater than N can be packed by translates of bricks 
from S. We let N* = N*(S) denote the smallest such N. 
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PART I I :  The two br icks theorem 
We now characterize the boxes that can be packed by translates of two given bricks, 
solving the Brick-Packing Problem for two bricks. We do not require that the bricks 
and the box have integer edge lengths. 

FIGURE 4 shows two packings of a box R with translates of two rectangular bricks 
81 and 82 • In one packing the box is partitioned by a plane into two sub-boxes R1 and 
R2, and the sub-box R; is a multiple of the brick 8; for i = 1, 2. We refer to such a 
packing as a bipartitioned packing of R with 81 and 82 . FIGURE 4 also shows a non
bipartitioned packing of R with the same bricks 81 and 82 • Because the trivial box 
of size 0 x 0 x · · · x 0 is a multiple of every nontrivial d-dimensional brick, either of 
the two sub-boxes may be trivial in a bipartitioned packing; this degenerate situation 
occurs precisely when the box is a multiple of one of the bricks. 

Figure 4 A bipartit ioned packing and a non-bi partit ioned packi ng of a box with two 
bricks 

Clearly, the existence of a bipartitioned packing is sufficient for the existence of a 
packing of a box with translates of two given bricks. The thrust of the next theorem is 
that this obvious sufficient condition is also necessary. 

Two B RICKS THEOREM (Geometric) . In any dimension the box R can be packed 
by translates of two given bricks 81 and 82 if and only if R can be partitioned by a 
hyperplane into two sub-boxes R1 and R2 such that R1 is a multiple of 81 , and R2 is a 
multiple of 82. 

We emphasize that the theorem does not say that every packing must be biparti
tioned. (See FIGURE 4.) However, if there is a non-bipartitioned packing, then there 
must also be a bipartitioned packing. 

We restate the 1\vo Bricks Theorem in the next section. The proof extends over the 
following three sections. The 2-dimensional case is the crucial one, and we analyze it 
separately. Note that the 1-dimensional case follows from our proof of Theorem 1.  

The two bricks theorem: Arithmetic version We have stated a satisfying and com
plete geometric characterization of the boxes that can be packed by translates of two 
given bricks. We now provide an equivalent arithmetic characterization in terms of the 
edge lengths of the box and the bricks. Recall that the set of all nonnegative integer 
linear combinations of v and w is denoted by 

(v ,  w) = {bv + cw : b = 0, 1, 2, . . . , c = 0, 1, 2, . . .  }. 

Two B RICKS THEOREM (Arithmetic) . Let z; . v; , and w; be positive real numbers 
for i = 1. 2, . . . , d. There is a packing of a z 1  x Z2 x · · · x Zd box with translates of 
V1 X V2 X • • • X Vd and W1 X W2 X • • · X Wd bricks if and only if 
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(a) z; /v; is an integer for i = 1 , 2, . . .  , d, or 
(b) z; /w; is an integer for i = 1 , 2, . . .  , d, or 
(c) there is an index k such that Zk is in (Vt .  wk } ,  and the numbers z; /v; and z; /w; are 

integers for all i =I= k. 

This theorem helps us answer Question (D). 

EXAMPLE. It is possible to pack a 12 X 12 X 1 1  box with 4 X 4 X 4 and 3 X 3 X 3 
bricks. 

Reason: Condition (c) is satisfied (with k = 3) because 12/4 and 12/3 are both 
integers, and 1 1  = 2(4) + 1 (3) . Thus the desired packing exists. FIGURE 5 shows 
a bipartitioned packing, where the two sub-boxes have sizes 12 x 12 x 8 and 12 x 
12 X 3. 

1 1  2(4) + 1 (3) 

Figure 5 A packing of a 1 2  x 1 2  x 1 1  box with 4 x 4 x 4 and 3 x 3 x 3 cubical bricks 

The preceding example and FIGURE 5 help us see why the two versions of the Two 
Bricks Theorem are equivalent. The two sub-boxes R 1 and R2 in the geometric version 
are nonempty and separated by a hyperplane perpendicular to the kth coordinate axis 
exactly when k is an index for which condition (c) holds in the arithmetic version. The 
integrality of z; /v; and z; /w; for i =I= k guarantees that R1 and R� are multiples of the 
two respective bricks. 

Semi-integer rectangles Our proof of the Two Bricks Theorem relies on a result 
that is of considerable interest in its own right. A semi-integer rectangle is a rectangle 
with at least one edge with integer length. More than a dozen proofs of the follow
ing result appear in the prize-winning article by Wagon [36]. We include one of the 
simpler proofs, a generalization of our earlier charge-counting argument that solved 
Question (B). (Also see Golomb's book [16, pp 12 1-123].) 

SEMI-INTEGER RECTANGLES THEOREM. Suppose that a rectangle R is tiled by a 
finite number of semi-integer rectangles. Then R itself is a semi-integer rectangle. 

Proof Place R in the first quadrant with the lower left comer at the origin. Partition R into cells of size 1/2 by 1/2 and color the cells black and white in a checkerboard 
manner with a black cell in the lower left comer, as in FIGURE 6. Each semi-integer 
rectangular tile encloses an equal amount of black and white area, and therefore R 
must enclose an equal amount of black and white area. Assume that R has size z 1  x z2 
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and is not a semi-integer rectangle. Then the lines x = Lz d and y = Lz2J partition R 
into four sub-rectangles, three of which enclose an equal amount of black and white 
area because they have an edge with integer length. The fourth rectangle R* has size 
zr X z� '  where z; = Zk - L Zk J .  We assert that R* encloses more black area than white, 
and this will give us a contradiction. Now the assertion is clear from a picture unless 
zk > 1 /2 for both k = 1 and k = 2. But in this case a brief calculation shows that the 
black area of R* exceeds the white area by ( 1  - zj) ( 1  - z�) ,  which is positive. • 

1 /2 

z* 2 

l z , J  z 1  

Figure 6 A checkerboard proof of the Semi-Integer Rectangles Theorem 

The two tiles theorem We now use the Semi-Integer Rectangles Theorem to give 
necessary and sufficient arithmetic conditions for a rectangle to be tiled by translates 
of two (not necessarily integer) rectangles. In other words, we prove the 2-dimensional 
case of the Two Bricks Theorem. 

Two TILES THEOREM . A z 1  x z2 rectangle can be tiled by translates of v 1  x v2 and 
w 1  x w2 rectangular tiles if and only if 
(a) z 1 /v 1  and z2fv2 are integers, or 

(b) z 1 /w 1  and z2jw2 are integers, or 

(c) z 1 /v 1  and z 1 /w 1  are integers and Z2 is in (v2 ,  w2} or 

(d) z2!v2 and z2!w2 are integers and Z 1  is in (v , , w ,  }. 

Proof. Suppose that the z 1  x z2 rectangle R is tiled by translates of v1 x v2 and 
w 1 x w2 rectangular tiles. Then certainly Z; is in ( v; , w; } for i = I ,  2 by the counting 
conditions. Now scale the tiling of R horizontally by a factor of 1 jv 1  and vertically by 
a factor of 1 jw2 to obtain a tiling of a (z 1 /v 1 )  x (z2fw2) rectangle R' by semi-integer 
rectangles of sizes 1 x (v2jw2) and (w 1 jv 1 ) x 1 .  By the Semi-Integer Rectangles The
orem R' must be a semi-integer rectangle. Hence z 1 jv 1  or zdw2 is an integer. Simi
larly, if we scale R by a factor of l jw 1  horizontally and I jv2 vertically, we find that 
z 1 jw 1  or z2jv2 is an integer. It now follows that one of the conditions (a)-(d) holds. 

Figure 7 The proof of the Two Ti les Theorem 



2 2  MATH EMATICS MAGAZI N E  

For the converse, first note that i f  (a) or (b) holds, then R can be tiled by translates 
of one of the given tiles. Suppose that (c) holds with z 1  = av 1  w 1  and z2 = bv2 + cw2 , 
where av 1 , aw 1 , b, and c are nonnegative integers . Then a horizontal line partitions R 
into two sub-rectangles R 1  and R2 of respective sizes av 1  w 1  x bv2 and av 1  w 1  x cw2 , 
as in FIGURE 7. Now R 1  can be packed by (aw 1 ) (b) translates of v 1 x v2 rectangles, 
and R2 can be packed by (a v 1 ) (c) translates of w 1  x w2 rectangles to give a packing 
of R . Condition (d) is treated similarly, but uses a vertical line to partition R .  • 

Proof of the Two Bricks Theorem We are ready to prove the Two Bricks Theorem 
in its arithmetic formulation. The theorem holds in dimensions d = 1 and d = 2 by 
the proof of Theorem 1 and our work above. Now suppose that d � 3. If (a) or (b) is 
true, then the box can be packed by translates of one brick, while if (c) is true, then 
there is a bipartitioned packing. 

Conversely, suppose that a z1 x z2 x · · · x Zd box R is packed by translates of bricks 
of size v 1  x v2 x · · · x vd and w 1 x w2 x · · · x WJ .  Also, suppose that neither (a) 
nor (b) holds. Then there are indices j and k such that neither z j I v j nor zd wk is 
an integer. If j =F k ,  then we inspect a suitable 2-dimensional face of our packing 
of R to see that there exists a tiling of a Zj x Zk rectangle with translates of vj x vk 
and w j x wk tiles. However, none of the conditions (a)-( d) in the Two Tiles Theorem 
holds, and thus no such tiling exists. Therefore j = k. Of course, a counting condition 
implies that Zk is in the set ( vb wk } .  It follows that (c) holds, which completes the 
proof. • 

We remark that Kolountzakis has recently used Fourier transforms to give a short 
proof of the Two Bricks Theorem [26] . 

Tiling with integer rectangles When specialized to integer rectangles, the Two Tiles 
Theorem takes the following useful form. 

C OROLLARY 2 .  Let v 1 ,  v2, w 1 ,  and w2 be positive integers with gcd(v 1 , w 1 )  = 

gcd (vz ,  Wz)  = 1 .  Then an integer rectangle of size n 1  x n2 can be tiled by translates 
of v 1 x v2 and w 1 x w2 rectangles if and only if 
(a) v1 divides n 1 ,  and v2 divides n2, or 
(b) w 1  divides n � o and w2 divides n2, or 
(c) v1 w 1  divides n 1 , and n2 is in ( v2, w2 }, or 
(d) v2w2 divides n2, and n 1 is in ( v 1 ,  w 1 } .  

A mild objection to our route to Corollary 2 may b e  raised: Our reliance o n  the 
Semi-Integer Rectangles Theorem in the proof of the Two Tiles Theorem means that 
we have gone outside the realm of integers to prove Corollary 2, which deals en
tirely with integer tiles. In [5] Corollary 2 and related results are established using 
only counting arguments and integers ; the Semi-Integer Rectangles Theorem is  side
stepped by means of an extension of the charge-counting proof used in FIGURE 3(b) 
to answer Question (B) .  

The hypothesis that gcd(v 1 ,  w 1 )  = gcd(v2 , w2) = 1 is not a significant impediment 
in applying Corollary 2; a scaling argument allows us to produce this case, as in our 
proof of the fol lowing important tiling theorem [22] . 

KLARNER '  S THEOREM . An integer rectangle of size n 1  x n2 can be tiled by v x w 
rectangles (with both orientations allowed) if and only if 
(a) v divides n 1 or n2, and 
(b) w divides n 1 or n2, and 
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(c) n i  is in ( v ,  w } ,  and 
(d) n2 is in ( v ,  w } .  

2 3  

Proof. I f  v and w are relatively prime, then the result follows from Corollary 2 with 
v i = w2 = v and W I = v2 = w .  If v and w are not relatively prime, then we divide 
n � >  n2 , v, and w by gcd(v ,  w) and apply a scaling argument. • 

Klamer's Theorem implies that there is a tiling of the integer rectangle R with 
v x 1 and 1 x v rectangles if and only if there is a tiling of R using rectangles in just 
one orientation. (This fact is also a consequence of a famous theorem of de Bruijn  
discussed in  Part IV. )  One implication is immediate. Thus Klamer's Theorem gives a 
negative answer to Question (A) since neither 1 6  nor 1 5  is divisible by 6. 

Pa rt I l l :  Two squares and th ree recta n g l es 

At a combinatorics conference in 1 977, Erdos [12] posed questions about asymptotic 
tilings of rectangles.  Straus (also in [12]) responded by announcing two theorems that 
extend Sylvester's Theorem to two dimensions. Roughly, two square tiles with rela
tively prime edge lengths do not suffice to tile all sufficiently large rectangles, but three 
square tiles do. We have been unable to locate proofs in the published works of Straus ,  
and several notable mathematicians at  the conference do not recall any arguments that 
Straus may have communicated [ 18] . In any case, theorems that vindicate Straus have 
subsequently appeared in the literature. We discuss these results here . 

The two squares theorem: Fricke In 1 995 Fricke proved the following result about 
tiling integer rectangles with squares [13] . 

Two S QUARES THEORE M .  Let v and w be relatively prime positive integers. An 
ni  x n2 rectangle can be tiled by v x v and w x w squares if and only if 
(a) v divides n i  and n2, or 
(b) w divides n i  and n2 , or 
(c) vw  divides n i ,  and n2 is in ( v ,  w } ,  or 
(d) vw divides n2, and n i  is in ( v ,  w } .  

Proof. I n  Corollary 2 let v i = v2 = v and W I = w2 = w .  

We now answer Question (E) . 

• 

EXAMPLE .  It is impossible to tile a 39 x 1 6  rectangle with 3 x 3 and 2 x 2 squares. 

Reason: Select v = 3, w = 2, n i  = 39 , and n2 = 1 6 . None of conditions (a)-( d) i s  
satisfied in the Two Squares Theorem. 

If v and w are relatively prime and greater than 1 ,  then conditions (a)-( d) imply that 
no square with edge length ( vw + 1 ) ' can be tiled by v x v and w x w square tiles for 
s = 1, 2, . . . .  Thus Fricke 's result implies that two square tiles do not suffice to tile all 
sufficiently large integer rectangles (in agreement with Straus). Fricke was apparently 
unaware of the earlier interest by Erdos and Straus in tiling rectangles with squares .  

We have worded the Two Squares Theorem and Klamer's Theorem in a manner that 
highlights a curious "dual" relationship between them. If we interchange the words 
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"and" and "or" throughout conditions (a)-(d) i n  either of these theorems, then we 
nearly obtain the statement of the other theorem. In Part IV we use combinatorial 
properties of a certain matrix to discover and explain a similar phenomenon in any 
dimension d ::: 2 .  

Three rectangles suffice, asymptotically The partition-and-pack scheme in  FIG
URE  8 supplies us with a "proof without words" of an asymptotic ti ling theorem for 
three rectangles. The verbal proof makes the details  clear. 

gw2 

fu2 

Figure 8 Part i t ion-and-pack strategy for the Th ree Recta ngles Theorem 

THREE RECTANGLES T HEOREM . Let T1 , T2, and T3 be integer rectangles of re
spective sizes u 1 x u2, v 1  x v2, and w 1  x w2. Suppose that the three numbers u j •  
v j ,  and w j are pairwise relatively prime for j = I and j = 2 .  Then all suffi
ciently large rectangles can be tiled by translates of T1 , T2, and T_1 . In partic
ular; any n 1  x n2 rectangle can be tiled if n 1  > n * ( v 1 w 1 ,  u 1 w 1 ,  u 1 v 1 )  and n2 > 
max {n * (v2 . w2) ,  n * (u2 , w2 ) ,  n * (u2 , v2 ) } . 

Proof Let R be an n 1 x n2 rectangle with n 1 and n2 satisfying the stated lower 
bounds . Then there are nonnegative integers a, b, . . .  , i so that 

n 1  = av 1 w 1  + bu 1 w 1 + cu 1 v 1 ,  
n 2 = dv2 + ew2 = Ju2 + gw2 = hu2 + i v2 . ( I ) 

We may now partition R into six sub-rectangles, as in F IGURE 8, where each sub
rectangle can be tiled by one of T1 , T2 , and T3 . For instance, the two darkest rectangles 
in FIG URE 8 can be tiled by T1 . • 

Consequences of the three rectangles theorem We mention three applications of 
the theorem in the previous section. First, as an immediate consequence, we see that 
Straus (in [ 12]) was also correct concerning three square tiles. 

THREE S QUARES T HEOREM . All sufficiently large integer rectangles can be tiled by 
three given squares with pairwise relatively prime edge lengths. 

The following counterexample indicates a lapse in [ 12] ; the edge lengths must be 
pairwise relatively prime. 

COUNTEREXAMPLE .  Square tiles with edge lengths 6, 1 0, and 15 do not tile all suf
ficiently large integer rectangles, even though gcd(6, 1 0, 1 5) = I .  
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Reason : If a rectangle can be tiled by squares with edge lengths 6, 1 0, and 1 5 , 

then it certainly can be tiled by squares with edge lengths 2 and 3 .  The Two Squares 
Theorem shows that no square with edge length 7'' can be tiled by these two squares 
for s = 1 ,  2, . . . .  

For our second application, we solve Problem B-3 from the 1 99 1  William Lowell 
Putnam Mathematical Competition, which asks whether 7 x 5 and 6 x 4 rectangles 
(with both orientations allowed) tile all sufficiently large rectangles. The answer is 
"yes ," and the solutions in [20, 24] imply that N*  ::::; 22 1 3 . The detailed analysis by 
Narayan and Schwenk gives the exact value N* = 33 [28] . The Three Rectangles 
Theorem implies that asymptotic tilings exist even if we fix the orientation of the 6 x 4 
rectangle; in this case we have N* ::::; n * (35 , 28 ,  20) = 1 97 .  

Our final application of  the Three Rectangles Theorem arises from the proof itself 
under the additional hypothesis that n2 > n*(u2, v2 w2) .  Now there are nonnegative 
integers h and j so that n2 = hu2 + j v2w2 , and thus we may take f = h ,  g = j v2 , 
and i = j w2 in ( 1 ) .  In FIGURE 8 the two darkest sub-rectangles along the lower edge 
may be merged to form a single sub-rectangle of size (bu 1 w 1  + cu 1 v 1 )  x hu2 , which 
can be tiled by T1 • We have proved the following result, which is in the spirit of the 
geometric version of the Two Bricks Theorem. 

COROLLARY. Let Tb T2, and T3 be integer rectangles with pairwise relatively prime 
horizontal edge lengths and pairwise relatively prime vertical edge lengths. Then all 
sufficiently large integer rectangles can be partitioned into five sub-rectangles, each of 
which can be tiled by one of T1 , T2, and T3 . 

Part I V: More b r i c ks, h i gher  d i me n s i o n s  

We now study packings of  a d-dimensional box for d 2:: 3 .  I n  some problems our 
bricks will be d-dimensional cubes, and in other problems we allow all d! orientations 
of one given brick. Our results are special cases of deeper theorems of Barnes [1, 2] 
and of Katona and Szasz [19], who provide necessary and asymptotically sufficient 
conditions for packings of boxes by sets of given integer bricks . Barnes associates 
polynomials with bricks and boxes and then applies ideas from algebraic geometry. 
Katona and Szasz employ the theory of matchings from combinatorics. Our proofs 
in the special cases we examine are simpler than the proofs for the general results 
in the papers just cited. We also get some better bounds for the asymptotic existence 
of packings. Finally, we see how a theorem from combinatorial matrix theory can be 
applied to packing problems. 

We restrict our attention to integer boxes and bricks . However, we rely on the 
following result, which also holds when the edge lengths are not integers . The 
2-dimensional case was a key ingredient in our proof of the Two Bricks Theorem in 
Part II. Several proofs based on combinatorial arguments are featured in Wagon [36] . 

S EMI - INTEGER B RICKS THEOREM . Suppose that a d-dimensional box R is packed 
by a finite number of d-dimensional bricks. If each brick has at least m integer edge 
lengths, then R itself has at least m integer edge lengths. 

We remark that for packings with cubes our restriction to integer edge lengths is not 
really a restriction at all ,  due to a beautiful result of Dehn [ 11 ] .  

DEHN ' s THEOREM.  If a box is packed by a finite number of cubes in d dimensions 
( d 2:: 2), then all edge lengths of the cubes and the box become integers after scaling 
the entire configuration by a suitable positive number. 
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One brick, all orientations: de Bruijn and Kelly The following famous theorem of 
de Bruijn gives necessary conditions for a d-dimensional box to be packed by a single 
brick with al l orientations allowed [9] . 

D E  B RUUN ' S  THEOREM . If the d-dimensional integer box of size n 1 x n2 x · · · x 
nd is packed by an integer brick of size v 1  x v2 x · · · x vd (with all d !  orientations 
allowed), then for each index i in { 1 ,  2, . . .  , d} there exists an index j such that V; 
divides n j · 

A brick of size v 1  x v2 x · · · x vd is harmonic provided either V; divides Vj , or Vj 
divides V; for all pairs i ,  j = 1 ,  2, . . .  , d .  De Bruijn also showed that the divisibility 
conditions in the above theorem are sufficient for packings with harmonic bricks . 

The seminal paper by de Bruijn [9] (which promulgated the results in the earlier 
Hungarian publications [7, 8] ) introduced polynomials and complex exponentials to 
the study of packings.  The elegance and power of de Bruijn 's  method inspired a host 
of variations and generalizations [1 ,  2, 4, 19, 21, 36] . We now give a different proof of 
one of these generalizations [21 ] .  

KELLY ' S THEOREM . If the d-dimensional integer box of size n 1 x n2 x · · · x nd  
is packed by integer bricks of size v 1  x v 2  x · · · x v d  (with all d !  orientations al
lowed), then the following statement holds for m = 1, 2, . . .  , d: For each index set 
{ i t , i2 , . . .  , im } there exists an index set Ut . jz , . . .  , jm } such that gcd(v; 1 , V;2 , • • •  , V;n) · 

divides gcd(n h ,  n h ,  . . .  , n jm ) .  

Proof Let R be a box of size nt  x n2 x · · · x nd and let  g = gcd(v; 1 , V;2 , • • •  , V;m ) .  
Scale the packing o f  R b y  a factor of 1 1  g i n  all d directions to produce a box R '  of size 
(n t fg )  x (nz/g) x · · · x (nd /g) that is packed by bricks, each of which has (at least) 
m integer edge lengths. By the Semi-Integer Bricks Theorem at least m of the edge 
lengths of R' are integers, that is ,  g divides at least m of the numbers n 1 ,  n2 , • • •  , nd . 

• 

Note that de Bruijn 's  packing conditions correspond to the case m = I in Kelly 's  
Theorem. We now answer Question (F) . 

EXA MPLE . It is impossible to pack a 720 x 200 x 1 00 box with I 5  x 1 2  x 1 0  bricks 
(with all six orientations allowed). 

Reason. Although de Bruijn 's  conditions are satisfied (as are the counting condi
tions), Kelly 's  conditions fail for m = 2 because gcd( 1 5 ,  1 2) = 3, and 3 divides just 
one edge length of the box. 

Packing boxes with cubes in d dimensions As suggested in [12], the results about 
tilings with squares in Part III are elements of a grander picture: With mild conditions 
on the edge lengths no set of d cubes in d dimensions packs all sufficiently large boxes, 
but every set of d + I cubes does. We now discuss theorems that make this assertion 
precise. 

THEORE M .  Let V t .  v2, • • •  , vd be integers greater than 1. Then the set ofd-dimensional 
cubes with edge lengths v 1 ,  v2, • . •  , vd does not pack all sufficiently large integer boxes. 

Proof The case d = 1 is easy. Suppose that d :=::: 2.  
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CLAIM . If a box R of size n 1  x n2 x · · · x nd is packed by translates of d cubes with 
edge lengths v 1 ,  v2, • • •  , VJ, then Vj divides n j for some index j .  

Scale the packing of  R by  a factor of  I jv; in the direction of the i th axis for i = 1 ,  
2 ,  . . .  , d to produce a packing of a box R' of size (n 1 /v 1 )  x (n2 jv2) x · · · x (nd /vd )  
with translates of  d bricks, each of  which has an  edge of  length I .  By the Semi-Integer 
Bricks Theorem n j j v j is an integer for some index j ,  which establishes the claim. The 
divisibility restrictions imposed by the claim yield the conclusion of the theorem. • 

Because the proof of the claim remains true for any permutation of V j ,  v2 , . • •  , vd , 
the preceding argument gives us strong necessary conditions for a d-dimensional box 
to be packed by d cubes. These conditions tum out to be asymptotically sufficient 
when the edge lengths of the cubes are pairwise relatively prime [ 19] . 

THEOREM 3 .  (a) If an n 1 x n2 x · · · x nd box is packed by cubes with edge lengths 
v 1 ,  v2, • • .  , VJ, then for each permutation TC of { 1 ,  2, . . .  , d }  there exists an index i such 
that V; divides nrr (i ) ·  

(b) Ifv 1 ,  v2, • • •  , vd are pairwise relatively prime and n 1 ,  n 2, • • •  , nd are sufficiently 
large, then the conditions in (a) are sufficient for a packing. 

Assertion (a) follows from the argument given earlier. We postpone the proof of (b) 
to the final section of this article. We now tum to packings with d + 1 cubes.  

THEOREM 4 .  In d dimensions all sufficiently large boxes can be packed by any given 
set of d + 1 cubes with pairwise relatively prime edge lengths. 

Proof Let v 1 , v2 , . . •  , vd+ J  be the pairwise relatively prime edge lengths of the 
given cubes .  We induct on d. Sylvester's Theorem is the case d = I .  Suppose that 
d 2: 2 and let R be an n 1 x n2 x · · · x nd box with 

where 

for k = 1 ,  2, . . .  , d + I .  There are nonnegative integers c 1 , c2 , . . .  , cd+ t such that 

Thus we may partition R into sub-boxes R1 ,  R2 , • • •  , Rd+ l , where Rk is of size 
(ckVk) x n2 x · · · x nd . By the induction hypothesis, if n2 , n 3 , • . •  , nd  are suffi
ciently large, then for each k = 1 ,  2 ,  . . . , d + 1 we can pack the (d - I ) -dimensional 
box R� of size n2 x n3 x · · · x nd with (d - I ) -dimensional cubes with edge lengths 
in { v 1 , v2 , • • •  , VJ+ d \ { vk } . Observe that R� is a (d - I ) -dimensional face of the 
sub-box Rk for k = 1 ,  2, . . .  , d + 1 .  Because ckvk is divisible by each length in 
{ v 1 , v2 , . . .  , VJ+ d \ { vd ,  the packing of R£ with (d - I ) -dimensional cubes can be 
"lifted" to a packing of Rk with d-dimensional cubes with the same edge lengths for 
k = 1 ,  2, . . .  , d + 1 .  The packings of R 1 ,  R2 , • . .  , Rd+ 1 yield the desired packing of R . 

• 

The proof shows that 
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(It i s  not hard to show that the successive bounds that arise for n2, n3, • • •  , nd in the in
duction cannot be larger than this expression. )  As an example, for four cubes with edge 
lengths 7, 5, 3, and 2 we have N* ::::; n * ( l 05 ,  70, 42, 30) = 383, which is vastly supe
rior to the gigantic bound N* ::::; 349 1 52 . 74098 from the general constructions in [19] . 
An explicit bound for N* does not appear in [2] . 

A construction similar to the one in the proof of Theorem 4 establishes a more 
general result. 

THEOREM 3 .  In d dimensions all sufficiently large boxes can be packed by any 
given set of d + 1 bricks whose corresponding edge lengths are pairwise relatively 
prime. 

Divisibility matrices We now introduce a matrix to record the divisibility relations 
between the brick and box edge lengths.  Let n h n2, • • •  , nd and v 1 ,  v2, • • •  , vd be two 
sequences of positive integers . The divisibility matrix An;v = [aij ] is a d by d matrix 
with ( i ,  j ) -entry 

_ { 0 if v; divides n j aij - 1 if v; does not divide n j 

Our definition differs slightly from the one in Katona and Szasz, but carries the same 
information [19] . 

EXAMPLE .  /f (n 1 , n2, n 3 ) = (720, 200, 1 00) and (v 1 ,  v2, v3 ) = ( 1 5 ,  1 2 , 1 0), then the 
divisibility matrix is 

An;v = [ � � � ] · 

0 0 0 

A transversal in a matrix A of order d is a set of d positions (i, :rr (i ) )  for i =  I ,  
2,  . . .  , d, where :rr is a permutation of { 1 ,  2 ,  . . .  , d} .  A transversal includes exactly 
one position in each row and one position in each column of A. The d! transversals 
in A correspond to the terms in an expansion of the determinant of A. Let us use 
the divisibility matrix to restate two of our earlier results . We continue to assume all 
lengths are positive integers . 

D E  B RUIJN ' s THEOREM (Restated) . If an n 1 x n2 x · · · x nd box is packed by v1 x 
v2 x · · · x vd bricks (with all d !  orientations allowed), then each of the d rows of the 
divisibility matrix An;v contains a 0. 

THEOREM 3 (Restated) . (a) /.f an n 1 x n2 x · · · x nd box is packed by d cubes with 
edge lengths v 1 , v2, • • •  , vd, then each of the d !  transversals of the divisibility matrix 
An;v contains a 0. 

(b) The transversal condition in (a) is sufficientfor a packing if v 1 ,  v2, • • •  , vd are 
pairwise relatively prime and n 1 ,  n2, • • •  , nd are sufficiently large. 

The divisibi lity matrix has revealed an unusual relationship between de Bruijn ' s  
Theorem and Theorem 3 for fixed edge lengths V J ,  v2, • • •  , vd  and n h n2, • . .  , nd .  In de 
Bruij n's  Theorem we have translates of d! bricks, and there are d conditions imposed 
on the divisibility matrix .  In Theorem 3 there are d bricks and d! conditions on the 
divisibility matrix. When d = 2, these two theorems become Klamer's Theorem and 
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the Two Squares Theorem, respectively, and the curious relationship we noted earlier 
is now placed in a broader context. 

The transversal condition in Theorem 3(a) has combinatorial ramifications. Let A 
be a matrix of order d.  If A has a row or a column of O's ,  then every transversal of 
A clearly contains a 0. More generally, one may show that if A has a p by d - p + 1 
submatrix of O's  for some p in { 1 ,  2 ,  . . .  , d } ,  then every transversal contains a 0. Frobe
nius established the converse, and proved the following cornerstone of combinatorial 
matrix theory [14, 15] . 

FROBENIU S '  s THEOREM . Let A be a matrix of order d. Then every transversal of 
A contains a 0 if and only if A has a p by d - p + 1 submatrix of 0 's for some p in 
{ 1 , 2 ,  . . .  , d } . 

Frobenius's Theorem is a member of a celebrated family of equivalent combinato
rial results (including the Marriage Theorem, Dilworth's Theorem for partially ordered 
sets , and Konig's Theorem for bipartite graphs) .  Proofs and discussions of the relation
ships among these theorems can be found in combinatorics books, e .g . ,  [6, 17, 31 ] .  

Proof of  an Asymptotic Packing Theorem Katona and Szasz applied the Marriage 
Theorem to establish necessary and asymptotically sufficient conditions for a box to be 
packed by translates of a set of given bricks [ 19] . As a glimpse of their more advanced 
techniques we use the divisibility matrix to give a short proof of Theorem 3(b). Our 
proof combines several ideas in this article. 

Proof of Theorem 3(b) Our strategy is to use Frobenius 's  Theorem to reduce the 
problem to the packing of a (p - I ) -dimensional box with p cubes, apply Theorem 4, 
and then "lift" to a d-dimensional packing. By the transversal hypothesis and Frobe
nius 's Theorem we know that the divisibility matrix An;v = [aij ] has a p by d - p + 1 
submatrix of O' s for some p in { 1 ,  2 ,  . . .  , d } .  Without loss of generality we may place 
the submatrix of O 's in the upper right comer of A so that aij = 0 for i = I ,  2,  . . .  , 
p and j = p,  p + 1 ,  . . .  , d .  We will show that the box R of size n 1 x n2 x · · · x nd 
can be packed by cubes with edge lengths v "  v2 ,  . . .  , vP . If p = I ,  then each edge 
length of R is divisible by v 1 , and R can certainly be packed by cubes with edge 
length v 1 • Now suppose that p > 1 and consider the (p - I ) -dimensional box R' of 
size n 1 x n 2  x · · · x np- l · It is helpful to observe that R' is a (p - I ) -dimensional 
face of R. By Theorem 4 the (p - I ) -dimensional cubes with edge lengths v 1 , v2 , • • •  , 
vP can be used to pack the box R' if n "  n 2 ,  . . .  , n p- l are sufficiently large. The known 
positions of O's in A tell us that v; divides n j for i = 1 ,  2,  . . .  , p and j = p, p + I ,  
. . .  , d .  From these divisibility relations it follows that we may "lift" our packing of 
the (p - I )-dimensional face R' to obtain a packing of the d -dimensional box R with 
d-dimensional cubes having edge lengths v 1 , v2 , . . .  , vP . • 

Acknowledgment. We thank Courtney Moen for his help and ideas and the referees for some improvements in 

clarity. TSM was partially supported by the Naval Academy Research Council .  

R E F E R E N C ES 

I .  F. W. Barnes, Algebraic theory of brick packing I, Disc. Math. 42 ( 1 982), 7-26. 

2 .  F. W. Barnes, Algebraic theory of brick packing II, Disc. Math. 42 ( 1 982), 1 29- 1 44. 

3 .  F. Beukers, Frobenius applet, http : I /WTNw . math . uu . nl/people/beukers/frobenius / ,  posted January 

200 1 .  

4 .  P. Boisen, Polynomials and packings: a new proof of de Bruijn's  theorem, Disc. Math. 146 ( 1 995),  285-287.  

5 .  R. J . Bower and T.  S .  Michael, Tiling a box with translates of two rectangular bricks, Elec. J. of Combin. 11 
(2004), #N7, 9 pages, (electronic). 



3 0  MATH EMATICS MAGAZI N E  

6 .  R .  A .  Brualdi and H .  J .  Ryser, Combinatorial Matrix Theory. Cambridge University Press, 1 99 1 .  

7 .  N .  G .  de Bruijn, Problem 1 1 9, Matematikai Lapok. 1 2  ( 1 96 1 ) , 103 .  

8 .  N .  G. de Bruijn  (with G. Hajos, G. Katona, and D. Szasz), Solution to Problem 1 1 9, Matematikai Lapok. 13 
( 1 962), 3 1 4-3 1 7 .  

9 .  N.  G. d e  Bruijn,  Filling boxes with bricks, Amer. Math. Monthly 76  ( 1 969), 37-40. 

1 0 .  J .  H. Conway and J.C. Lagarias, Tiling with polyominoes and combinatorial group theory, J. Combin. Th. A 

53 ( 1 990), 1 83-208. 

I I . M. Dehn, Ober Zerlegung von Rechtecken in Rechtecke, Math. Annalen 57 ( 1 903), 3 1 4-332. 

1 2 . P. Erdos, A tiling problem, Problem session, Proceedings Combinatorial Mathematics, Canberra 1 977, Lec

ture Notes in Mathematics 686, A. Dold and B. Eckham, eds. Springer, 1 977. 

1 3 .  J .  Fricke, Quadratzerlegung eines Rechtecks, Math. Semesterber. 42 ( 1 995), 53-62.  

14 .  G. Frobenius, Ober Matrizen aus nicht negativen Elementen, S. -B K. Preuss. Akad. Wiss. Berlin ( 1 9 1 2) ,  

456-477. 

15.  G. Frobenius, Ober zerlegbare Deterrninanten, S. -B K. Preuss. Akad. Wiss. Berlin ( 1 9 1 7), 274-277 . 

1 6. S. W. Golomb, Polyominoes, 2nd ed. Princeton Univ. Press, 1 994. 

1 7 .  M.  Hall, Combinatorial Theory, 2nd ed. Wiley, New York, 1 986. 

1 8 .  D. A. Holton, B .  D. McKay, R. G.  Stanton, and W. D. Wallis, personal communications, March, 1 999. 

19. G .  Katona and D. Szasz, Matching problems, J. Combin. Th. B 10 ( 1 97 1 ) , 60-92. 

20. K. S.  Kedlaya, B. Poonen, and R. Vakil, The William Lawell Putnam Mathematical Competition / 985-2000: 

Problems, Solutions, and Commentary, Math. Association of America, Washington, DC, 2002. 

2 1 .  J .  B. Kelly, Polynomials and polyominoes, Amer. Math. Monthly 73 ( 1 966), 464-47 1 .  

22. D .  A. Klamer, Packing a rectangle with congruent N-ominoes, J. Combin. Th. A 7 ( 1 969), 1 07- 1 1 5 .  

2 3 .  D.  A .  Klamer, Brick-packing puzzles, J. Rec. Math. 6 ( 1 973), 1 1 2- 1 1 7 .  

24. L. F. Klosinski, G .  L .  Alexanderson, and L. C.  Larson, The fifty-second William Lowell Putnam Mathemati

cal Competition, Amer. Math. Monthly 99 ( 1 992), 7 1 5-724. 

25. G. Kolata, In Archimedes' puzzle, a new eureka moment, New York Times, ( 1 4  December 2003) pp I ,  46 

(National Edition pp I ,  32);  http : I /www . nyt ime s . com/200 3 / 1 2 / 1 4 / s c ienc e / 1 4MATH . html . 

26. M. N. Kolountzakis, Filling a box with translates of two bricks, Elec. J. of Combin. 11 (2004), #N l 6, 4 pages, 

(electronic).  

27. G. E. Martin, Polyominoes, A Guide to Puzzles and Problems in Tiling. Math. Association of America, 

Washington, DC, 1 99 1 .  

28.  D .  A .  Narayan and A .  J .  Schwenk, Tiling large rectangles, this MAGAZINE 75 (2002), 372-380. 

29. R. W. Owens, An algorithm to solve the Frobenius problem, this MAGAZINE 76 (2003) ,  264-275 .  

3 0 .  J .  Propp, A pedestrian approach t o  a method o f  Conway, or, a tale o f  two cities, this MAGAZINE 7 0  ( 1 997), 

327-340. 

3 1 .  P. Reichmeider, The Equivalence of Some Combinatorial Matching Theorems. Polygonal Pub! . House, Wash

ington, NJ, 1 984. 

32.  M .  Reid, Tile homotopy groups, Enseign. Math. 49 (2003) ,  1 23-1 5 5 .  

33 .  S .  K. Stein and S .  Szabo, Algebra and Tiling: Homomorphisms i n  the Service of Geometry Math. Association 

of America, Washington, DC, 1 994. 

34. J .  J. Sylvester, Mathematical questions with their solutions, Educational Times 41 ( 1 884), 2 1 .  

35 .  W. Thurston, Conway's tiling groups, Amer. Math. Monthly 97 ( 1 990), 757-773. 

36. S .  Wagon, Fourteen proofs of a result about tiling a rectangle, Amer. Math. Monthly 94 ( 1 987), 6 1 0-6 1 7 .  

Don't Let  Them Know I t's Math 
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contains the digits 1-9 .  There is no math involved. You solve the puzzle 
with reasoning and logic." ! ! !  

Leslie Hayes 
Saint Joseph's University 

Philadelphia, PA 1 9 1 3 1  
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Let's start with a hands-on demonstration. We take a long, rectangular strip of ad
hesive tape (or postage stamps) and wind it diagonally around a cylinder in such a 
way that the sticky surface of the tape is entirely in contact with the cylinder. It fol
lows that the two long edges of the tape must lie along parallel helices. This is true 
by definition- if we start with a line in a plane and then wrap the plane around a 
cylinder we get a helix. What about the short edges of the tape? Well, by the same 
definition, they must lie along parallel helices that are orthogonal to the first two ! We 
call the resulting, familiar object a helical band (FIGURE 1). It plays a central role in 
this discussion. 

Figure 1 A hel ical band 

Here is a more general demonstration. Starting with a long, rectangular strip of 
paper, we fix in our minds a three-dimensional curve C having the same length as the 
strip. Now we force one long edge of the strip to follow the curve, and call the result 
a ribbon from now on. Surely the whole ribbon must bend and twist if one edge is to 
stick to the curve. Can we describe the shape of the ribbon? More to the point, can we 
present a mathematical model that would help us visualize such a ribbon and might 
help us illustrate or understand the curve? 

At this point it is helpful to introduce some terminology. In the plane of the rect
angular strip of paper, let's choose an orientation so that the cross-sections parallel 
to the long edges are horizontal and the cross-sections parallel to the short edges are 
vertical. When the ribbon is bent along a curve in space, these horizontal and vertical 
cross-sections are positioned along curves that we call threads and transversals, re
spectively. We force one thread (one long edge of the strip) to follow the given curve C.  
But what can we say about the other threads and about the transversals? Should the 
other threads be pictured as congruent copies of C?  Should the transversals be pictured 
as line segments orthogonal to C?  Before trying to answer these questions, it is very 
important to state that our limited goal is to construct the threads and transversals of 
a realistic-looking ribbon-we hope only for verisimilitude, and make no assertions 
about the physics of the situation. 

As we have already seen, if the curve C is a helix then a helical band can be formed 
as one physical realization of a ribbon following this curve. All the threads of the 
ribbon are helices parallel to C.  and all the transversals are helices orthogonal to C. 
But this realization is not unique. For example, without changing the position of one 
edge along the given helix, an opposite comer can be curled up so that we no longer 
have a helical band. Thus, we cannot claim that forcing one edge of a ribbon to follow 
a given curve uniquely determines the shape of the ribbon. 
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How do we construct a ribbon model? Let 's focus on the transversals .  The main 
requirements are that each transversal must be a curve of the proper length and be or
thogonal to C,  since these properties appear to be true of real-life ribbons .  The simplest 
choice (perhaps too simple) i s  to use line segments. If each transversal is rendered as a 
line segment orthogonal to C then we call the model a (generalized) Linear Transver
sal (LT) model. An LT model may be a reasonable way to thicken a curve, and this  can 
be useful in computer graphics. If a curve has been thickened into some sort of ribbon 
or tube, then hidden-surface and lighting techniques can be effective in illustrating the 
curve. However, the LT model often won' t  provide a realistic shape. In particular, it 
fails to yield a helical band when C i s  a helix (FIGURE 2). 

Figure 2 LT model (top) a n d  HT model (bottom) 

On the other hand, in our new model , we propose to emulate the helical band and 
render each transversal as an arc of a helix. This is the Helical Transversal (HT) model . 
The transversals at the top of the ribbons in FIGURE 3 show the subtle, but significant, 
difference between the two models .  

Figure 3 LT model ( left) and HT model ( r ight) 

Of course, both the LT and HT models are just models and they do not yield the 
exact shapes of real-world ribbons,  except in special cases. Even so, models can pro
vide plausible and attractive pictures helping to illustrate interesting curves .  Indeed, 
the illustrations in this  article have been produced using MATLAB to implement the 
formulas for both models. By the way, computer-drawn ribbons are used in science to 
visualize certain large molecules . For example, Carson [1 ]  has employed a construc
tion of threads (rather than transversals) to form ribbons that aid in understanding and 
illustrating the molecular structure of proteins. Our focus on transversals is apparently 
a different approach from Carson 's .  

For simplicity, throughout thi s  discussion we assume that the curve C can be given 
in parametric form s � (x (s ) ,  y (s ) ,  z (s ) ) ,  with arc length s E [0, l] as parameter and 
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in terms of functions that are sufficiently differentiable. To be more precise, although 
we won' t  dwell on this matter, we assume that the fifth derivatives of the coordinate 
functions exist and are continuous on [0, / ] . This suffices to force the curvature and 
torsion functions (discussed in the next section) to have at least two continuous deriva
tives. We further assume that C never intersects itself and that it has positive curvature 
at every point. Such assumptions are commonly used in the study of space curves, and 
we want to focus on the successful modeling of ribbons rather than on the potential 
pitfalls of troublesome curves .  

R i bbon maps and r i bbon mode l s  

Let u s  clarify the distinction between actual ribbons and our mathematical models of 
ribbons. For the purposes of this article, we think of a real-world ribbon (such as a 
flexible ruler, a roll of postage stamps,  a strip of film, etc . )  as being made of a material 
that cannot be distorted or stretched or shrunk in any direction. A mathematical way 
to describe such a ribbon is by a ribbon map, defined on a rectangular domain D. Let 
D = [0, /] x [0, w] (typically with l » w), where l is the length and w is the width 
of the ribbon. Now let 's define a ribbon map to be a function f : D --+ JR3 , having 
continuous first partial derivatives on D, and satisfying the following three properties: 

(R l )  The transversal v � f(s , v) has v E [0, w]  as its arc length parameter, for every 
fixed s E [0, / ] . That is ,  fv · fv = 1 .  

(R2) The thread s � f(s , v) has s E [0, l ]  as its arc length parameter, for every fixed 
v E [0, w] . That is, fs · fs = 1 .  

(R3) Transversals and threads intersect at right angles. That is ,  fs · fv = 0. 
Some readers may recognize that these properties amount to f being a local isom

etry. Indeed, in terms of the classical notation in the study of surfaces, the properties 
can be compactly expressed as G = 1 ,  E = 1 ,  and F = 0. 

Here is a more precise version of our problem of forcing one edge of a ribbon to 
follow a given curve. Let C be a curve of finite length l in JR3 and let D = [0, l] x 
[0, w]  be given. We would like to produce a ribbon map f : D --+ JR3 such that s � 
f(s , 0) is the curve C. 

The author is not aware of any exact solutions to this problem of finding ribbon 
maps, except in special cases, so let us speak of approximate solutions-models
instead. A ribbon model for D and C is a map f : D --+ JR3 (with continuous first 
partials on D) such that s � f(s , 0) is the curve C, and such that (R l )  holds. Whether 
the map f satisfies (R2) and (R3) is what separates a ribbon model from an exact ribbon 
map. 

By the way, our definition of a ribbon map does not require the map to be one
to-one. Likewise, a ribbon model may not be one-to-one. This flexibility might be 
desirable, as in the case of modeling a helical band that partially overlaps itself. Al
ternatively, the domain of a ribbon map that is not one-to-one can be restricted to a 
subset D 1  = [0, l] x [0, w d  of D in order to achieve a one-to-one result. In effect, we 
would just be choosing a narrower ribbon that is easier to bend along a curve without 
bumping into itself. 

Again, let C be represented by the arc length parametrization 

s � (x (s) ,  y (s ) ,  z (s ) ) .  

Ribbon models are expressed in terms of the Frenet frame, a "moving" coordinate 
system that we construct at each point of the curve. At the point P = P (s ) on the 
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curve, we define unit vectors T ,  N ,  and B.  The unit tangent vector T i s  a vector of 
length 1 pointing in the direction of the derivative (x' (s) , y' (s) , z' (s) } .  The unit normal 
vector N is the vector of length 1 in the direction of dT j ds. We can understand T and 
N by thinking of an object moving at unit speed along the curve. In this situation, T(s) 
is the velocity vector at time s and N(s) is in the direction of the acceleration vector. 
These vectors are necessarily orthogonal to each other because 

O = 
� ( 1 ) 

= 
d (T · T) 

= 2T . 
dT

. 
ds ds ds 

We complete the coordinate system (the Frenet frame) by defining the unit binormal 
vector B to be T x N. The properties of cross products guarantee that this is a unit 
vector orthogonal to both T and N. 

Our discussion of ribbon models also requires the notions of curvature and torsion 
along a curve. These are scalar quantities that characterize the geometry of the curve. 
Using the Frenet frame, we have a straightforward way to define and describe the cur
vature K and torsion t" of a space curve. In fact, the Frenet-Serret formulas (described 
in detail by Stewart [4] or Oprea [3]) tell the story: 

dT 
- = KN, 
ds 

dN 
- = -KT + t"B, 
ds 

dB 
- = - t"N. 
ds 

( 1) 

By the first of these formulas, the curvature K is a measure of how fast the curve is 
turning within the osculating plane spanned by T and N. And by the third formula, 
since B is normal to the osculating plane, the torsion t" is a measure of how quickly 
the normal to the osculating plane is turning--or how the curve is twisting. 

As one example, the torsion of a circle, or of any other plane curve, is zero since 
the osculating plane is fixed. As a second example, think of a helix. We derive in the 
next section the fact that both the curvature and the torsion of a helix are constants. A 
nonzero, constant torsion reflects the understanding that, along a helix, the vector B 
turns at a constant rate. 

In the Linear Transversal model, each transversal is the line segment of length w 
starting at a point P and heading in the direction of B. Why B? The easiest way to 
explain this choice is to think of the special case in which the given curve is planar. 
In this case, the ribbon can be naturally realized as a (right, noncircular) cylinder. For 
example, imagine a coil of postage stamps standing on a desktop and following a spiral 
curve in the plane of the desktop (FIGURE 4). The vectors T and N are in the plane of 
the curve and the transversals are line segments in the direction of B or -B. 

Figure 4 Ribbon for a planar curve 
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For simplicity, we focus first on one choice of sign. The formula for the LT model 

is simply 

f(s , v) = (x (s) , y (s) , z (s) ) + vB(s) , (2) 

where (s , v) E D. The differentiability assumptions for the curve guarantee that the 
first partials of f exist and are continuous on D. Also, it is clear by our construction of 
f that (Rl ) holds. In fact, fv · fv = B · B = 1. Thus, the LT model is a ribbon model. 

Similar models are obtained by replacing B in this formula with another unit vector 
in the normal plane to the curve. In this way, we could regard the generalized LT model 
to be 

f(s , v) = (x (s) , y (s) , z (s) ) + v ((cos q)N + (sin q)B) , (3) 

where s 1-4 q (s) is a continuously differentiable function. We investigate these models 
in the next section. 

The Helical Transversal model is strongly motivated by the helical band. We have 
already noted that when a rectangle is wrapped around a (right, circular) cylinder, 
the boundaries of the rectangle become helical arcs on the cylinder. The wrapping 
operation we speak of preserves distances and angles, so it sends perpendicular lines 
to orthogonal helices. Thus, in fact, for any helix H through a point P on a given 
cylinder, there is a unique helix Horth lying on the same cylinder and orthogonal to H 
at P.  

There are two fundamental ideas behind the HT model. One i s  that we  may view a 
curve as being approximated at each point by a certain helix-in general, a different 
helix at each point. In fact, we show in Theorem I that at any point P of a given 
curve C there is a unique, approximating helix that has the same curvature, torsion and 
Frenet frame at P.  This is the main result in a MAGAZINE article by McHugh [2]. The 
other fundamental idea is to choose the transversal at P to be an arc of the helix that 
is orthogonal to the approximating helix, just as if the ribbon were a helical band. In 
order to work out the formula for this HT model, we need to do some preparation in 
the next section. 

By the way, a quick comparison of the two illustrations in FIGURE 5 shows that 
the LT and HT models can appear remarkably similar. In this case, however, the HT 
model seems to do a better job of portraying a ribbon whose bottom edge follows a 
3-dimensional, spiral curve C. (Look at the "tightly wound" end of the spiral.) 

Hel ix redux 

Figure 5 LT model ( left) and HT model (right) 

The helix plays a major role in the study of space curves. Just as the shape of a plane 
curve at a point is compared to a circle by calculating the curvature, the shape of a 
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space curve at a point can be compared to a helix b y  calculating the curvature and the 
torsion. 

Tangent vectors to a helix make a constant angle () E [0, rc] with the chosen di
rection vector of the axis of the cylinder. Note that () = rc /2 corresponds to a circle 
and e = 0 or rc corresponds to a line parallel to the axis of the cylinder. These are 
degenerate helices, and we will avoid them in the rest of this section. 

A helix on a given cylinder can be right-handed, like the threads of a standard screw, 
or left-handed. One way to characterize the difference is in terms of the tangent vector 
T and the binormal vector B at each point. Once the positive direction of the axis of 
the cylinder is selected, a right-handed helix has the property that the angles that T 
and B make with the axis are both acute or both obtuse. By contrast, for a left-handed 
helix one of these angles is acute and the other is obtuse. 

We need formulas describing the geometry of a helix. By choosing convenient co
ordinates, it is enough to work with a helix on the cylinder of radius r having the 
z-axis as its directed axis and passing through the point (r, 0, 0) . Such a helix can be 
parameterized by { X =  r C?S t 

y = r sm t 
z = ct 

t E JR. 

The helix is right-handed if c > 0 and left-handed if c < 0. 
Let s denote an arc length parameter for the helix ( 4 ) , so 

ds = 
l (dx , 

dy , 
dz ) l = Jr2 + c2 • 

dt dt dt dt 

It is routine to calculate the Frenet frame for this helix. The vectors are 

T =  (-r sin t , r cos t , c ) /Jr2 + c2 ,  

and 

N = dT / I dT I = (- cos t ,  - sin t , 0) 
dt dt 

B = T x N = (c sin t , -c cos t ,  r ) /Jr2 + cz . 

Next we calculate the curvature and torsion of the helix ( 4 ) .  The curvature is 

And, since 

l dT I r 
K 

= 
ds 

= 
r2 + c2 · 

dB . 2 2 c - = (c cos t , c sm t , O) / (r + c ) = -
2 2 

N = -rN, 
ds (r + c ) 

it is apparent that the torsion is 

c r = --- . 
r2 + c2 

(4) 

(5 )  

(6) 

It is worth noting that both the curvature and the torsion are constant. This is a property 
that characterizes helices, in the sense that a space curve is a (circular) helix if and only 
if the curvature and torsion are constant. 
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Observe that the angle () between the tangent vector T of the hel ix and the positive 
z-axis satisfies 

It follows that 

c 
cos () = T . k = -;:::;;:====::;;: 

y'r2 + c2 

. r 
sm () = = B . k,  

.Jr2 + c2 

(7) 

(8) 

since sin () is positive on the interval (0, 1r ) .  Finally, note that the arc length along the 
helix between the two points (r, 0, 0) and (r cos t ,  r sin t, ct) is given by 

r ds 
dt = Jr2 + c2 / t / . lo dt 

(9) 

We actually apply this arc length formula to the orthogonal helix. For the helix (4), 
the orthogonal helix drawn on the same cylinder and passing through the point (r, 0,  0) 
is given by { x = r cos t 

y = r �in t t E IR 

z = =.!.... t c 

( 1 0) 

To see that these two helices ((4) and ( 1 0)) are orthogonal at the point (r, 0, 0) , just 
note that the dot product of their tangent vectors is equal to zero. 

Developing the HT model Now that we have the necessary background, we can 
explain the HT model. 

THEOREM 1 .  Assume we are given the following data: a point P E JR3, orthogonal 
unit vectors T, N, and B = T x N, and real numbers K > 0 and T. Then there is exactly 
one helix passing through P and having K as curvature, T as torsion, and T, N, and B 
as Frenet frame at P .  

Proof The formulas (5)  and (6) for the curvature and torsion of a helix allow us  
to  uniquely choose the radius r of the needed cylinder, and to  calculate the needed 
parameter c . In fact, 

and 
T c - --::----::-

Kz  + r 2 . 

Also, from (7) and (8) we find that the angle () between the tangent vector T of our 
intended helix at P and the unknown axis of the cylinder (with a suitable direction 
vector A) satisfies 

and 

To locate the axis of the cylinder, note that the normal vector at any point of a helix 
is directed towards the axis and is orthogonal to A. Thus, the axis we seek passes 
through a point that is a distance r from the point P in the direction of N and satisfies 
A · N = 0. Furthermore, (7) and (8) require T · A = cos () and B · A = sin () .  It follows 
that A =  (cos () )T + (sin ())B,  which is uniquely determined by the data. The axis ,  
then, passes through the terminal point Q of the position vector ('5[> + rN , and has 
direction vector A.  



3 8  MATH EMATICS MAGAZI N E  

To present a formula for the desired helix, we use the coordinate system with Q 
as origin and with direction vectors -N, A x  ( -N) , and A. These are the appropriate 
vectors because A is the direction of the axis of the cylinder (playing the role of the z

axis) ,  and -N points in the direction of QP (playing the role of the x-axis). The other 
vector, A x ( -N) , is exactly the one that completes the right-handed system. Now a 
point X =  (x (t ) ,  y (t ) ,  z (t ) )  of the helix is determined, using the vector form of (4), by 

QX = (r cos t) ( -N) + (r sin t ) (A x ( -N) )  + (ct ) (A) . 

It is not difficult to verify that this helix has the stated properties. • 
The construction used in the proof of the theorem is the first step in deriving a 

formula for the HT ribbon model . Assume that a curve C is given in parametric 
form by P (s )  = (x (s) ,  y (s ) ,  z (s ) ) ,  where 0 :::::: s :::::: l and s is arc length. Also, let 
D = [0 , l] x [0, w] be given. According to Theorem 1 ,  at each point P (s )  the curve 
has the same curvature, torsion, and Frenet frame as a certain, unique helix (which 
varies with s ) . As in the proof of the theorem, this helix is on a cylinder whose axis 
passes through the terminal point Q of the position vector oP + rN , and has direction 
vector A =  (cos O)T + (sin O)B.  Of course, all the quantities involved in this discus
sion are functions of s ,  since they vary along the curve. 

Now we need to construct the orthogonal helix at P on the same cylinder. As in the 
proof of the theorem, we locate the origin at Q and use the vectors -N, A x (-N) , 
and A as the coordinate directions.  In these terms and using ( 1 0) ,  a point X of the 
orthogonal helix satisfies 

( -rz ) 
QX = (r cos t ) ( -N) + (r sin t ) (A x ( -N) )  + ---;;- t (A) , ( 1 1 )  

where 

( 1 2) 

and t is a parameter. Of course, r and c, like K and r ,  are functions of s .  We mention 
this to emphasize that the specific orthogonal helix emanating from the point P (s) 
varies with s. The shape of the orthogonal helix is governed by r and c, and these 
parameters, in tum, are determined by the curvature and torsion of the curve at P (s ) .  

The HT model f :  D � JR3 i s  characterized b y  requiring each transversal v �---+ 
f(s , v) to be an arc of the orthogonal helix starting at P (s) and having v as arc length 
parameter. Thus, each point (s , v) E D is sent to the point X as in ( 1 1  ) , chosen so 
that the arc length from P (s) to X is equal to v .  According to (9), this says that the 
parameter t in ( 1 1 ) should satisfy 

We pick 

-vc 
( 1 3) t = 

-r ,Jr=r;;=2 =+=c"""z 
from among the two options .  It turns out that with this choice the resulting formula for 
the HT model agrees with the LT model, when the curve happens to be planar. 

Finally (see FIGURE 6), since 

OX =  oP - QP + QX = oP + rN + QX, 
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Figure 6 Constructing transversals  i n  the HT model 

we can revise ( 1 1 )  and write an explicit formula for the HT ribbon model: 

f(s ,  v) = (x (s) ,  y(s) ,  z (s))  + rN + (r cos t) (  -N) (-r2 ) 
+ (r sin t ) (A x ( -N)) + ---;;- t (A) .  

If we use A = (cos O)T + (sin O)B and simplify, we obtain 

f(s , v) = (x {s) ,  y(s) ,  z (s))  + [r sin t sin 0 -
r; t cos O J T 

+ [r - r cos t ]N + [ -r sin t cos 0 - r; t sin 0 J B. 

39 

Next, we replace r,  c, cos O,  sin O,  and t with their equivalent formulas ((12), (7), (8), 
( 13)) involving K and -r. The result is K { [  K (-v-r./K2 + -r2 ) ] 
f(s , v) = (x (s) ,  y (s) ,  z (s))  + 2 2 sin + vr T K + 'r .j K2 + -r2 K ( (-vrJK2 + -r2 )) 

+ 1 - cos N K 
Although this expression prominently shows the dependence on K and -r , we can 

simplify the appearance of the formula by letting p = ./K2 + -r2 and t = -vrpjK to 
obtain what we will refer to as the HT model: 

f(s, v) = (x (s) ,  y (s) ,  z (s))  + ;2 { [� sin t + vr J T 

+ ( 1  - cos t)N + [ �-r sin t + vK J B } . ( 14) 

It is not hard to see from this formula that the first partials of f exist and are contin
uous on D. And the construction guarantees that (R1) holds. Thus, the HT model is, 
indeed, a ribbon model. We explore this matter further in the next section. For now, it 
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i s  revealing to note that there i s  a component i n  the tangent direction-the transversal 
is not just drawn in the normal plane at each point of the curve as is the case with all 
of the LT models. We can also see in this formula, that if r ----+ 0 then t ----+ 0 and, in 
the limit, we obtain the LT model (2). 

When do the LT and HT mode l s  become r i bbon maps? 

We need to test each model to determine if the ribbon map properties (R2) and (R3) 
hold. Let's  look first at (R2) , the property saying that distance is preserved along 
threads.  This is equivalent to requiring that, for each fixed v, the magnitude of (,. (s , v ) 
is identically equal to 1 .  

In the case of the LT model, we have 

d 
fs (s ,  v) = 

ds 
{ (x (s ) ,  y (s ) ,  z (s ) }  + vB (s ) } = T(s) - vrN(s ) ,  

and it follows that 

( 1 5 )  
Thus ,  (R2) fails to  hold in the case of  the LT model, since fs · fs > 1 (if v =!= 0)  unless 
the torsion r of the curve is zero at every point. This is the same as saying that the 
curve C must be planar. 

On the other hand, the LT model satisfies (R3) for every curve. That is,  the transver
sals are orthogonal to the threads at every point. To see this, we calculate the dot 
product 

fs · fv = (T(s) - vrN(s ) )  · B(s )  = 0 .  

The generalized LT models (3) behave in a similar way. In fact, (R2) fails  unless 
r = 0 but (R3) always holds . For if 

f(s , v )  = (x (s ) , y (s ) ,  z (s ) } + v ( (cos q )N + (sin q)B) 

then, by the Frenet-Serret formulas ( 1 ) , 

fs (s ,  v ) = T + v ( (- sin q)q 'N + cos q (- K T + rB) + (cos q)q 'B + (sin q ) ( - rN))  

= ( 1 - vK cos q )T - v (q' + r ) (sin q )N + v (q' + r ) (cos q)B 

and 

fv (s , v) = (cos q )N + (sin q )B. 

Thus,  

(, · fv = - v (q ' + r ) sin q cos q + v (q '  + r ) cos q sin q = 0, 

so (R3) holds . Also, after a little simplification, 

fs · fs = ( 1 - V K cos q )2 + v2 (q ' + r )2 . 

The only way to make this expression be identically equal to 1 is to have cos q = 0 
and q' + r = 0. But cos q = 0 means that the model is reduced to one of the special 
LT models  in which the transversals are drawn in the direction of ±B. It follows that 
q is constant, q ' = 0, and r = 0. That is ,  the curve must once again be planar for (R2) 
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to hold. The conclusion i s  that the LT model and all the generalized LT models are 
ribbon maps if and only if the given curve is planar. 

Before we begin the discussion of whether the HT function ( 14) satisfies the re
quirements to be a ribbon map, it may be useful to make an additional remark for the 
purposes of comparison. It seems reasonable to say that the LT model is designed for 
planar curves and can be expected to provide a good approximation to a ribbon map if 
r is close to zero (so the curve is close to being planar) . Indeed, this is born out by our 
computation of f, · fs as in ( 1 5) .  By contrast, the HT model is designed for helices (K 
and r constant) and should be expected to provide a good approximation to a ribbon 
map if K1 and r ' are close to zero. The next theorem verifies that this is the case. 

We need to analyze the partial derivatives of the HT ribbon model f given by ( 1 4) ,  
and straightforward (though somewhat arduous) computations yield the expressions 
below. 

One partial derivative is 

where 

K T ( l - COS t)  0 ]  = 
2 

' 
p 

- r  sin t 
82 = ---

p 

Just as in ( 14) ,  p = -JK2 + r2  and t = - vrpjK . 
The other partial derivative is 

and ( 1 6) 

fs (s , v) = (a 1 K 1 + f3t r ' + YJ )T + (a2K 1  + fJ2r ' + Y2)N + (a3K 1 + {J3 r ' + y3)B , 

where 

K2 (cos t - 1 )  Y1 = 1 + 
2 p 

K sin t 
Y2 = -- , 

p 

K r ( 1 - cos t)  
Y3 = ( 1 7) 

and the alphas and betas are somewhat more complicated functions of the same sorts. 
They are sums of fractions whose denominators are powers of p and whose numerators 
are polynomials in K ,  r , v , sin t, and cos t .  For example, 

(2K r2 - K3 )  sin t v (r 3 - K2r + r 3 cos t )  a1 = s + 4 p p 

It is clear from the form of all these coefficient functions (the alphas, betas, gammas, 
and deltas) ,  that they are continuous functions on D. This is because K ,  and hence 
p, is nonzero for (s , v) E D. It follows that the coefficient functions are bounded on 
the compact set D. To shorten the statement of the following theorem, we can take 
advantage of the vector notation a = (a 1 , a2 , a3 ) and similarly for /3 , y, and o .  

THEOREM 2 . Let C be a curve of length l in JR 3  and let D = [0, l ]  x [0 ,  w ] .  The 
HTfunction f : D ---+ JR3 given by (14) satisfies the following properties. 

(i) Distance is preserved along transversals (that is, (R l )  holds): 

fv · fv = of + oi + oj = 1 1 8 1 1 2 = 1 .  

(ii) The ribbon map condition (R2) holds if K1 = 0 = r ' and it holds approximately if 
K' and r ' are sufficiently small: 

fs · fs = 1 + l l a i i 2 (K ') 2 + (2a · /3)K 'r ' + 1 1 /3 1 1 2 (r ') 2 + (2y · a)K' + (2y · /3) r ' , 

since II 1' 1 1  = 1 . 
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(iii) The ribbon map condition (R3) holds if K' = 0 = -c', and it holds approximately 
if K1 and -c' are sufficiently small: 

fs · fv = (a ·  6)K1 + (/l · 6)-r' , 

since 1' · 6 = 0. 
Proof The proof amounts to using the formulas for the partial derivatives, fv and 

fs . It is not difficult to verify, using ( 16) and ( 17), that 

1 1 6 1 1
2 = I , 1 1 1' 1 1  = 1, and 1' · 6 = 0. • 

It should be recognized that we are not apt to apply Theorem 2 by letting K' and -r' 
tend to zero. Since the curve C would typically be given as part of the data, the func
tions K and -c, along with their derivatives, are already determined and fixed. Quali
tatively, the theorem just confirms that the HT model is apt to perform best when the 
curvature and torsion of the curve are changing gradually. 

Figure 7 LT model ( left) and HT model (right) 

In closing, we return to the empirical aspect of this topic-after all, the HT and 
LT models actually do provide pictures. What may be most striking about the side-by
side pictures obtained from the two models is how similar they are. Given the relatively 
complicated derivation of the HT model, we may have expected more dramatic differ
ences between the two. The fact is, however, that the transversals in both models start 
out in the direction of the same binormal vector B. In cases where the models are no
ticeably different, it is an indication of the effect of torsion in the given curve. As a 
final example, FIGURE 7 is offered as a suggestion of how a curve can be illustrated 
using a ribbon to provide some added depth and interest. The curve in this case is given 
by 

y = t2 t e [O, l ] ,  
{ X = t 

z = (2/3)t3 

and has the nice property that the torsion and curvature are the same. In fact, 

2 
"C =  = K. 

( 1  + 2t2)2 

( 18) 
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Apparently, the torsion decreases by a factor of 9, from -r = 2 at one endpoint to 
-r = 2/9 at the other. And perhaps the HT model does a better job of signaling this 
change. Recall that in the HT model each transversal is plotted along a different helix. 
And each helix lies on a cylinder of varying radius, given in this example by r = 

Kj (K2 + -r 2) = 1 / (2-r ) .  The relatively small radius when t = 0, one ninth of the radius 
when t = 1 ,  causes the distinctive curl in the HT ribbon. This may not be a dramatic 
improvement over the result of the LT model, but the curled edge is eye-catching and 
directs our attention to the part of the curve where torsion is high. 

Acknowledgment. I wish to thank the referees for suggesting many improvements. 
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Unexpected depth and complexity can arise from problems that are stated surpris
ingly simply. One valuable tool is simplifying even more and analyzing special cases. 
On the other hand, generalizing a problem whose solution is well understood can be 
just as useful.  The problem we analyze in this paper provides a case study for both 
activities. We hope that our discussion, with its open questions and proposed connec
tions, allows the reader to take yet another step forward. 

Our starting point is a problem on the 1 988 International Mathematical Olympiad 
(IMO) . It is stated in the following way: 

az + bz 
P1 If a ,  b, and q = are nonnegative integers, then q is a perfect square. 1 + ab 
We note that there is an account of the problem's interesting IMO history in A. Engel ' s  
book titled Problem-Solving Strategies [1 ] :  

The . . .  problem was submitted by the FRG [Federal Republic of Germany] .  No
body of the six members of the Australian problem committee could solve it. . . .  
Since it was a number theoretic problem it was sent to four most renowned Aus
tralian number theorists .  They were asked to work on it for six hours . None of 
them could solve it in this time. The problem committee submitted it to the jury 
of the XXIX. IMO marked with a double asterisk, which meant a superhard prob
lem, possibly too hard to pose. After a long discussion, the jury finally had the 
courage to choose it as the last problem of the competition. Eleven students gave 
perfect solution. 

Engel [1]  gives two solutions to our problem. The first, in Chapter 6 (Number 
Theory, E 1 5 , p .  1 27), uses the idea that there is a lattice point on the hyperbola 
x2 + y2 - qxy - q = 0 if and only if q is a perfect square. The second solution can 
be found in Chapter 8, (The Induction Principle, Problem 6, p. 2 1 1 ) . It follows from 
this solution that if there exist integers a ,  b ,  and q satisfying q = (a2 + b2) / ( 1  + ab) ,  
then q = (gcd(a , b)) 2 . In  this paper we investigate the problem further, with a bit of 
help from a computer, and account for all integers a and b for which q is an integer. 

Using a simple computer code to generate solution pairs (a , b) satisfying the re
quirement, we discover recursive relationships within the solution set. We investigate 
these relationships further, and effectively find the structure of the set of all solutions 
and so obtain a new way to solve the original problem. The recursive relationships 
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are reminiscent of that of the Fibonacci sequence; indeed, several Fibonacci-like prop
erties of these solutions can be established. Similar properties are shared by a whole 
family of sequences defined by recurrence relations, namely, the generalized Fibonacci 
sequences studied by Kalman and Mena [2] . 

Throughout the article, there are a number of exercises posed for the interested 
reader. These are typically easy to complete based on the demonstrated techniques. 
The last section contains suggestions for generalization, as well as questions of what 
interesting structural properties can be established for the extended solution set. 

Discovering solutions and structures It is certainly not difficult to come up with 
integer pairs (a , b) for which q in Pl is an integer. We will refer to such pairs in 
the future as solutions to the problem Pl.  Since the problem is symmetric in a and 
b we would rather consider nonordered pairs, and for simplicity we use the notation 
(a , b) with the understanding that a � b. We can easily point out the trivial solution 
(a , b) = (0, 0) with q = 0. Moreover, if a =  0, then q = (a2 + b2) j ( 1  + ab) = b2 , 
and we generate an infinite list of solutions 

(0, 0) , (0, 1 ) ,  (0, 2) , (0, 3) . . .  

with q-values 02 , 1 2 , 22 , 32 , • • . •  Furthermore, if a > 0 is an integer and b = a3 , then 

a2 + b2 a2 + a6 
2 I + a4 

2 q = 
I + ab 

= 
I + aa3 = a 

I + a4 = a 

which means that the pairs 

( 1 ,  1 3 ) ,  (2, 23 ) ,  (3 , 33 ) ,  (4, 43 ) ,  . . .  

are also solutions with corresponding q -values 1 2 , 22 , 32 , 42 , . . • . Let us consider an
other simple case, and assume that a = b i= 0. In this case 

a2 + a2 a2 + I - 1 + a2 a2 - I 
q = = = 1 + -- . 

I + a2 I + a2 a2 + I 

and therefore (a , b) = ( 1 ,  1 )  is a solution with q = 1 ;  we also see that there are no 
solutions with a = b > 1 .  

A natural question can be posed here : Are there any other solutions with q = I ?  
Since q = 1 implies 1 = (a2 + b2) j ( 1  + ab) ,  or a2 + b2 = ab + I  � b2 + I , we con
clude that a = 0 or a = 1 .  If a = 0, then b2 = I ,  which yields b = I .  If a = 1 ,  then 
1 = ( 1  + b2) j ( 1  + b) ,  which implies b2 = b and in tum b = 1 (since 1 = a  � b). So, 
not unexpectedly, the answer to our question is no, the only solutions corresponding 
to q = 1 are (0, 1 )  and ( 1 ,  1 ) .  

We easily found a good number of solutions (a , b )  to Pl, but are there more? Many 
more? Experimentation with a doubly nested loop, presented in pseudo-code below, 
helped us to get additional pairs and, ultimately, insight into the structure of all solu
tions.  

ABQs= [] 

for a=O to 1 000 

f or b=a t o  1000 

q= ( a � 2 +b � 2 ) / ( a*b+ 1 )  

if  int eger ( q) 

store ( [a , b , q] , ABQ s )  

end 

end 

end 

%to store the a , b , q  solut i on triples 

%scan through int egers for a 

%scan through integers f or b 

%comput e q 

%if q i s  int eger 

%store solut i on triples in ABQs 
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If we use this code to search for solutions with either component between 1 and 
1 000, we find the following list: 

( 1 ,  1 ) ,  (2, 8) , (3, 27) ,  (4, 64) , (5 , 1 25) , (6, 2 1 6) ,  (7 , 343) , (8, 30) , 

(8 ,  5 1 2) ,  (9, 729) , ( 1 0, 1 000) , (27 , 240) , (30, 1 1 2) ,  ( 1 1 2 , 4 1 8) .  

The values assumed by q for these pairs are 1 ,  22 , 32 , . • •  , 1 02 . Some of these solu
tions are new, not having the form (a , a3 ) .  These are (8, 30) , (27 , 240) , (30, 1 1 2) , and 
( 1 1 2 , 4 1 8) ,  with corresponding qs, 4 ,  9 , 4,and 4. Let us list the solution pairs we know 
for q = 4: {0, 2) , (2, 8 ) ,  (8 ,  30) , (30, 1 1 2) , ( 1 1 2 , 4 1 8) .  Here is a pattern, a chain ! Does 
it continue? 

With a bit of effort we can notice another pattern, a recursion: 

8 = 4 . 2 - 0; 30 = 4 . 8 - 2; 1 1 2 = 4 . 30 - 8 ;  4 1 8  = 4 . 1 1 2 - 30. 

Based on this observation we suspect that the next solution pair is (4 1 8 ,  1 560) , since 
1 5 60 = 4 · 4 1 8 - 1 1 2, and indeed, (4 1 82 + 1 5602) / ( 1  + 4 1 8  · 1 560) = 4. Our con
jecture in general terms is the following: 

If ao = 0, a , = 2, and an+ I = 4an - an- I for n = 1 ,  2 ,  3 . . .  , then an+ I is a pos
itive integer, an < an+ ! and (a� + a�+ l ) / ( 1  + anan+d = 4for n = 0, 1 ,  2 ,  3 . . . .  

The first two parts follow quickly from the recursion equation. We prove the es
sential part of our statement by induction, using a simple property of proportions:  if 
A, B, C,  D are positive real numbers and B i= D, then A / B = (A - C)j(B - D) 
exactly when A / B = C j D. To begin the induction, observe that the statement holds 
for n = 0: 

Let us assume that (a�_ 1 + a�)/ ( 1  + an- I an ) = 4 (with n � 1 )  and try to show that 
(a� + a�+ 1 ) / ( 1  + anan+d = 4. Since 

4 2 2 
4 = _!!::_ = 

an+ l  + an- I an+ !  - an- I 
an an an (an+ l - an- I ) 

2 + 2 ( 2 + 2) 2 + 2 ( 2 + 2 ) an an+ l  - an- I an an- I an - an an+ l  = = ' 
1 + anan+ l - ( 1  + an- I an ) 1 + an- I an - ( 1  + anan+ J ) 

with C = a� +  a�+ l ' D = 1 + anan+ l • A =  a�_ 1 + a� and B = 1 + an- l an we have 

Thus the sequence of solutions (0, 2) ,  (2, 8 ) ,  (8 ,  30) , (30, 1 1 2) ,  ( 1 1 2 ,  4 1 8) can be 
continued, (an- J ,  an ) is followed by (an , an+ J ) ,  where an+ l  = 4an - an- I · Let us call 
this sequence of pairs the chain corresponding to q = 4. Alternatively, in the fol
lowing we will also consider the corresponding sequence 0, 2, 8, 30, 1 1 2 ,  . . .  (an+ I  = 
4an - an - J ) . 

EXERCISE 1 .  Generalize the case q = 22 by showing that for all q = k2, with k > 
2, there corresponds an infinite chain: (bo , b J ) ,  (b , , b2 ) ,  . . .  (bn- J . bn ) ,  (bn , bn+ J ) ,  . . .  
where b0 = 0, b1 = k, and bn+ l  = k2bn - bn- 1 for all n � 1 and, furthermore, (b� + 
b�+ 1 ) / ( 1  + bnbn+ l ) = k2 for n = 0, 1 ,  . . . .  
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We list a few of these solutions chains: 

(0, 0) , (0, 0) , (0, 0) , 0 0 0 

(0, 1 ) , ( 1 ,  1 ) , ( 1 ,  1 ) ,  0 0 0 

(0, 2) , (2, 8) , (8 ,  30) , (30, 1 1 2) , 0 0 0 

(0, 3) ,  (3 ,  27) , (27 , 240) , (240, 2 1 33) , . . . , and, in general 

(0, k) ,  (k , k3 ) ,  (k3 ' k5 - k) ,  0 0 0 0 

( 1 )  

Let u s  summarize what we have obtained s o  far. The known solutions are contained in 
chains (a0 , a 1 ) ,  (a 1 ,  a2 ) ,  • • •  , (an- ! ,  an ) ,  . . . , given by the recursive formulas a0 = 0, 
a1 = k,  and an+ !  = k2an - an- !  for k = 0, 1 , 2 , . . . ; in each such chain the corre
sponding q is q = k2 . The first two chains, corresponding to q = 02 and q = 1 2 , are 
periodic, producing finitely many solutions, while the rest provide infinitely many. 

All solutions found It is not clear at this point whether these chains contain all solu
tions, but they certainly include all pairs that we were able to detect computationally, 
no matter how far we tried. Now we show that they indeed include all solutions. 

Assume that a is a positive integer for which there exists a corresponding nonneg
ative integer x so that (a2 + x2) / ( 1  + ax )  = m ,  where m > 1 is an integer (we have 
already seen the cases m = 1 and m = 0). Note that we do not know at this point 
whether m is a perfect square. Now, x2 - amx + a2 - m = 0 has two real solutions 

x 1 • 2 = (am ± Ja2m2 - 4(a2 - m) ) /2, since a2 (m2 - 4) + 4m :::=: 4m > 0. The inte
ger x must coincide with either x1 or x2 , and since x1 + x2 = am, it follows that both 
x1 and x2 are integers . We now show that x1 > a and a > x2 :::=: 0. It is clear that 

am + Ja2m2 - 4(a2 - m) am 
x ,  = 

2 > 2 2: a .  

O n  the other hand, (xi + a2 ) / ( 1  + x2a)  = m implies ax2 + 1 > 0 ,  which i n  tum im
plies x2 > - 1 /a .  Thus x2 2: 0, since a is a positive integer and x2 is also known to be 
an integer. Also, we assert that 

am - Ja2m2 - 4(a2 - m) 
Xz = 

2 
< a . 

This holds since it fol lows from m 2: 2 that 8a2 < 4a2m + 4m, and adding a2m2 -
4a2m - 4a2 to each side gives a2 (m - 2)2 = a2m2 - 4a2m + 4a2 < a2m2 -
4(a2 - m) ,  which implies 

a (m - 2) < Ja2m2 - 4(a2 - m) .  

Now w e  start going backwards to discover a known chain behind us:  For the (x2 , a )  
pair w e  have that (xi + a2) / ( l + x2a)  = m and 0 ::: x2 < a .  I f  x2 = 0 then 

xi + a2 2 -=--- = a  = m . 1 + x2a 

If x2 > 0 then x2 will take over the role of a .  Using the ideas above we obtain that 
there exists a nonnegative integer x3 such that 0 ::: x3 < x2 and 

x2 + x2 3 2 = m . 1 + X3X2 
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Repeating this procedure finitely many times we must get to zero, that is ,  there exists 
n so that a > Xz > X3 > · · · > Xn- 1 > Xn = 0 and 

for i = 2, . . .  , n. In particular, 

xf + xf_ l 
---'-----'---'- = m 
1 + X;Xi - 1 

oz + x�- I z = xn- 1 = m .  1 + 0 · Xn- 1 

We have gained two results at once: On one hand m is proved to be a perfect square, 
on the other hand, the original solution pair (a , x) must be in the chain correspond
ing to the perfect square m, since any value in a solution pair corresponding to m 
uniquely determines the forward and backward chain links (because of the quadratic 
equation) . Thus we proved that all pairs of nonnegative integers (a , b) such that 
(a2 + b2) j ( l  + ab) is an integer are members of chains in ( 1 ) . 

Moreover, we note that, for m > 0, the recursive formula implies that gcd (an- l , an )  
= gcd (an , an+ I ) ,  since it follOWS from an+ I = m2an - an- I that gcd(an - 1 , an )  divides 
an+ l and gcd (an , an+d  divides an- I for n = 2, 3, . . . . Thus when (a 1 , a2) = (k , k3 ) ,  
q = k2 = (gcd (an ,  an+d)2 , as w e  remarked earlier. 

Fibonacci-like properties We can see from Exercise 1 that the sequences in ( 1 )  
arise from second-order linear recurrence relations similar to that of the famous Fi
bonacci sequence, fn+ l  = fn + fn- 1 for n ::: 1 ,  with fo = 0 and /1 = 1 .  A number 
of properties of the Fibonacci sequence also hold for the sequences { bn } as defined in 
Exercise 1 .  

Indeed, in the June 2003 issue of the MAGAZINE [2] , Kalman and Mena "expose" 
the Fibonacci recurrence as just one example of a general second-order linear recur
rence relation; the popular properties of the Fibonacci numbers are shared by every 
sequence generated by such a recurrence. Rather than prove all these properties again,  
we l ist  some of them here as exercises, referring the reader to the Kalman and Mena 
article for more details . 

EXERCI S E  2. General Binet formula Show that the terms of the sequence {bn } 
formed from the chain corresponding to k2, (that is, b0 = 0, b 1  = k, and bn+ l = k2bn -
bn_ I for n ::: 1 ), satisfy 

b = 
k ( (k2 + .Jk4=4") n 

_ 
( k2 _ .Jk4=4") n)

' n 
.Jk4 - 4 2 2 

n = 0, 1 ,  2 ,  . . . .  

A formula for the sum of the first n Fibonacci numbers is easy to find. Let us compute 
the partial sums sn = a0 + a 1 + · · · + an for the sequence defined by a0 = 0, a 1 = 2,  
and an+ I = 4an - an- I · We sum the equations 

to obtain 

which yields Sn = (an+ l  - an )/2 - 1 .  



5 0  MATH EMATICS MAGAZI N E  

EXERCISE 3 . Show that for the sequence bo = 0 and b ,  = k, bn+ i = k2bn - bn- i 
for n � 1 ,  we have 

1 
Sn = bo + b ,  + · · · + bn = -2-- (bn+ i - bn - k) . 

k - 2  

EXERC ISE  4 .  Show that for the sequence b0 = 0 and b1 = k, we have bn+ i 
k2b11 - bn- l  for n � 1 

EXERCISE  5 .  Show that for the sequence {bn } 

for n ,  m � 1 .  

EXERC ISE  6 .  Is it true that bn I bpn for n ,  p � 1 ?  

The property det(A B )  = det A · det B implies that det(An ) = (det A)n for n E N+ , 
where det A denotes the determinant of the matrix A .  Thus we see that, for 

we have 

1 = (det Rt = det (R
n
) 

that is, 

_ 
d 

(( 1 /2 0 ) ( an+ ! 
- et 0 1 /2 -an 

Hence it follows that an+ !  I a� - 4 and an- i I a� - 4. 

EXERCISE 7. Show that for the sequence {bn } with n � 1 

EXERCI S E  8 .  Show that the last digits of the terms in the sequence corresponding 
to any chain form a periodic sequence. We can also form a periodic sequence from the 
last digits of the sequence of partial sums {sn l · 

One step toward generality Suppose we drop the nonnegativity condition for a ,  b 
in the original problem and consider a more general one: 

a2 + b2 
P2 Find integers a ,  b, so that = q is an integer. 

1 + ab 
It is quite clear that the linear recurrence relations an+ ! = qan - an- l (or an- i = 

qa11 - an+ d  would generate solution pairs in the negative direction as well, and that the 
chains of solution pairs , formed from adjacent terms in the doubly infinite sequences 
below, would continue in a symmetric fashion about 0. 
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. . .  ' 0 ,  0 ,  0 ,  0, 0 ,  . . .  
. . . ' - 1 ,  - 1 ,  - 1 ,0 ,  1 ,  1 ,  1 ,  . . . 

. . . ' - 1 1 2 , -30, -8 ,  -2 , 0, 2 , 8 ,  30, 1 1 2 ,  . . .  
. . .  , -240, -27, -3 , 0 , 3 ,  27 , 240, . . .  , and, in general, 

. . .  , - (k5 - k) , -k3 , -k ,O, k ,  k3 , k5 - k ,  . . . . 

5 1  

(2) 

But would other kinds of solutions appear? The only possibility for this is that a and 
b are opposite in sign and q < 0. By changing the ranges of the loops for a and b into 
negative integers in our pseudo-code, our findings show that there seems to be only one 
negative q corresponding to new solutions, q = -S that is. Also those solutions can 
be pieced together into a pair of chains (negatives of one another) associated with the 
doubly infinite sequences emanating from the solutions (a , b) = (-3 ,  1 )  or ( 1 ,  -3 ) .  
The two chains, 

. . .  ' 32 1 ,  -67, 14, -3 ,  1 ,  -2, 9 ,  -43 , 206, . .  . 
. . . ' -206, 43 , -9 ,  2 ,  - 1 ,  3 , - 14 , 67, -32 1  . .  . (3 )  

correspond to  q = -S and are generated by the recurrence an+ I  = -San - an - I · 
Clearly, the second can be recovered from the first by pivoting around 1 and changing 
the signs (and vice versa) . We set out to prove a new conjecture : 

If a ,  b are integers, ab < 0, and (a2 + b2) / ( 1  + ab) = q is a negative integer, 
then q = -S, and all solutions are formed from adjacent pairs in the two se
quences in ( 3 ). 

We can observe the symmetries in (3) and reformulate this problem by setting m = 
-q and switching the sign of the negative member in each (a , b) pair (or every other 
term in the sequences in (3)) .  The equivalent formulation of the conjecture obtained 
this way is the following: 

If a ,  b, and (a2 + b2) j (ab - 1 ) = m are positive integers then m = S. Fur
thermore, all solutions pairs are adjacent members of two sequences generated 
from (a J ,  a2 ) = ( 1 ,  2) and (a J , a2 ) = ( 1 ,  3)  by the recursion an+ I  = San - an- I  
(n = 2 ,  3 , . . .  ) .  

If  one member of  a solution pair (a , b ) ,  say a ,  is 1 ,  then (b2 + 1 ) / (b - 1)  = m,  
which implies that the two values for b are 

m ± -Jm2 - 4m - 4 b l . 2 = 2 
. 

Thus b 1 + b2 = m and both roots must be integers. This in tum yields that m2 - 4m -
4 = p2 , where p is a positive integer. A short calculation shows that the only integer 
solution to this equation is p = 1 ,  which implies that m = S, and b = 2 or b = 3 are 
the two solutions when a = 1 .  

Next assume that x is a positive integer solution to the equation 

a2 + x2 
--...,- = m ,  ax - I  

where a and m are positive integers . Necessarily, m � 3 ,  since a2 + x2 � 2ax > 
max - m if m = 1 or m = 2. We further assume a � 2 (the case a = 1 has been 



5 2  MATH EMATICS MAGAZI N E  

treated above).  Then (a2 + x2) j (ax - 1 )  = m implies x2 - max + a2 + m = 0 ,  so 
the possible values of x are 

X1 , 2 = 
2 

Since x 1  + x2 = ma is an integer and one of the solutions x1 or x2 is an inte
ger, so is the other. Let x 1  2: x2 , then x 1  2: ma/2 > a (since m 2: 3) .  On the 
other hand, x1 x2 = a2 + m > 0 implies x2 > 0. We now show that x2 < a, or 
ma - ,Jm2a2 - 4a2 - 4m < 2a , which is equivalent to 

a (m - 2) < Jm2a2 - 4a2 - 4m , equivalently 8a2 < 4m (a2 - 1 ) .  

This i s  true, because a 2: 2 implies 8a2 < 1 2(a2 - 1 ) ,  and, i f  also m 2: 3 ,  we conclude 

8a2 < 1 2(a2 - 1 )  S 4m (a2 - 1 ) .  

We have shown that there i s  an integer 0 < x2 < a so that 

a2 + x� ----=- = m .  
axz - 1 

If x2 = 1 ,  then our previous argument applies : a = 2 or a = 3 and m = S .  If x2 > 1 ,  
then x2 takes the role of a and we can repeat the procedure above to obtain a solution 
x3 satisfying 0 < x3 < x2 and 

In a similar fashion we obtain the finite sequence x1 > x2 > · · · > xk- i  > xk corre
sponding to the same m,  and in finitely many steps we reach xk = 1 .  This in tum 
shows that xk- i  = 2 or Xk- i  = 3 and m = S is the only possibility for solutions to 
exist. We can see now that all solution pairs to the reformulated version of problem P2 
are adjacent pairs from two different infinite sequences starting with (a 1 , a2) = ( 1 , 2) 
or (a 1 , a2) = ( 1 ,  3 ) ,  respectively. 

It can be easily seen that these two sequences are in fact an+ l = San - an- l  
with (a , ,  a2 ) = ( 1 ,  2 )  and (a 1 ,  a2) = ( 1 ,  3 ) .  Indeed, take two adjacent solution pairs 
(an- i •  an ) ,  (an , an+ ! ) with n > 1 from one of the two sequences generated by the 
recursion above. We subtract the two equalities 

to obtain a�+ i - a�- i = San (an+ i - an_ , ) ,  which implies an+ l + an- i  = San , since 
an+ 1 > an- i · This proves the reformulated conjecture and establishes the description 
of all solutions of P2 given in (2) and (3) .  

More challenges needed? We now are confident that we have a very good under
standing of the solutions and their relationships for problem Pl and its generalization 
P2. Of course, if the reader is hungry for more challenges we can always widen the 
scope of our investigation. Problem P2 is a special case of the following problem: 

a2 + b2 + c2 
P3 Find integers a ,  b, and c so that = q is an integer. 1 + ab + be + ac 
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Clearly, there are a number o f  questions to ask about the solutions to P3: 

What can we discover about the solutions to P3 numerically? 

Are there new kinds of recursive relations among the solutions?  

Do we have closed forms for the solutions?  

How do the new solutions (if any) enrich the structure that we have unveiled? 

Do they form new linearly ordered subsets or would a more complicated ordering 
appear? 

Would there still be only finitely many negative values for q ?  

Can w e  prove our numerical discoveries? 

We invite the interested reader to join the investigation. 

Acknowledgment. The authors are grateful to J .  Kineses and L. Megyesi, as well  as the anonymous reviewers 

for their interest and valuable suggestions. 
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Proof With out  Wo rds :  
Padoa's I n eq u a l i ty 

(A l essa n d ro Padoa, 1 8 68-1 9 3  7) 
If a ,  b ,  c are the sides of a triangle, then 

II. 

abc � (a + b - c) (b + c - a) (c + a - b) . 

lx - y l 

�--x ___ c __ .:..Y __ --1� 

X + y � 2-JXY 

abc = (y + z) (z + x ) (x + y) 
� 2ffi . 2fo . 2-JXY 
= (2z) (2x) (2y) 
= (a + b - c) (b + c - a ) (c + a  - b) 

-RO G E R  B .  NE L S E N  

LE W I S  & C L A R K  C O L L E G E  

P O RTL A N D ,  O R  972 1 9 
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On a recent geometry exam at Ursinus College, students were asked to find the 
cross ratio of four collinear points in the real projective plane. One of the students 
forgot how to do the problem and thought to himself, "I know that the cross ratio 
must involve a ratio . .  .it must be a ratio of . . .  hmm . . .  cross products !"  and proceeded to 
calculate a "ratio" of cross products. Imagine the surprise of the authors when all the 
numbers worked out. 

Cross products are a familiar computation from calculus :  The cross product of vec
tors a and b gives a vector normal to the plane spanned by a and b whose magnitude 
is determined by their lengths and the angle between them. However, the cross ratio, 
while quite useful both in classical Euclidean geometry and in projective geometry, is 
probably less familiar. In Euclidean geometry, the cross ratio of four collinear points 
is a "ratio of ratios," computed by looking at signed distances : if A, B, C, and D are 
all collinear, then the cross ratio is defined to be 

ABCD = 
I AC I I l A D  I 

( ) 
I C B I I DB I '  

where distances are assigned with respect to some fixed choice of orientation on the 
line, so that for example, I A D I = - I DA I (see Figure 1 ) .  One interesting property of 
the cross ratio is that it is independent of the orientation assigned to the line. 

CB < 
AC > 

s :  
• 

c :  • 
AD 
DB 

Figure 1 S igned d i stances for fou r  co l l i near poi nts; leftward poi nt ing  arrows correspond 
to negative d i stan ces 

The cross ratio can be quite useful . For example, one can use the cross ratio to 
determine actual distances from aerial photographs .  Suppose an aerial photograph is 
taken of a road with three objects that are at known distances apart from each other, 
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and a car whose relative position i s  uncertain.  Using measurements taken from the 
photograph of the images of the objects and the car, the known distances between the 
objects, and the fact that the cross ratio of the four points (the objects and the car) in 
the photograph is equal to the cross ratio of the analogous four points on the ground, it 
is possible to determine how far the car is from the objects. The cross ratio also may be 
used to provide alternate, slick proofs for classical results in geometry such as Pappus '  
theorem. 

The real projective plane The real projective plane, JRIP'2 , has a somewhat counter
intuitive but useful geometry. In JRIP'2 , the "points" of the geometry are lines through 
the origin in JR3 , and the "lines" of the geometry are planes through the origin in 
JR3 • A projective point A in JRp2 may be represented using homogeneous coordinates 
[a 1 ,  a2 , a3 ] ,  where (a 1 ,  a2 , a3 ) is any nonzero vector lying along the line in JR3 that de
fines A ;  two homogeneous coordinates [a 1 , a2 , a3 ] and [a 1 , a2 , a3 ] represent the same 
projective point if and only if one is a nonzero scalar multiple of the other. While this 
formulation is computationally efficient, it may be hard to visualize. 

One way to visualize JRIP'2 is to imagine positioning your eye at the origin in JR3 ; then 
two points lying on a ray through the origin are indistinguishable. You may choose as 
representative projective points those points on the rays through the origin that are at 
unit distance from the origin, that is ,  points that lie on the unit sphere centered at the 
origin. Projective lines, which correspond to planes through the origin in JR3 , become 
great circles on the unit sphere. In this model, projective geometry may be thought of 
as the geometry of what one can distinguish from a viewpoint at the origin. The only 
complication with this presentation of the spherical model of JRIP'2 is that there is one 
more identification of points in the projective plane than has occurred by collapsing all 
the points we see from the origin to points on the unit sphere, namely that antipodal 
points of the sphere must also be identified. Thus, we have the rather comical image 
of a viewer who can ' t  distinguish her front from her back-but this is a consequence 
of the fact that the real projective plane is a nonorientable surface. 

The projective plane shares many properties with the ordinary Euclidean plane, 
but it also has fundamentally different properties (Brannan, et. al . [ 1 ] ,  Eves [5, 6] or 
Seidenberg [13] provide thorough introductions).  For example, in the projective plane, 
every two projective lines intersect, so there is no notion of parallel projective lines . 
(This is intuitively clear if we consider the spherical model of the projective plane, 
since projective lines correspond to great circles and every two great circles intersect .)  
The fundamental transformations of the projective plane, projective transformations, 
are maps from JRIP'2 to JRIP'2 that correspond (in homogeneous coordinates) to invertible 
linear transformations from JR3 to itself. 

Projective transformations fail to preserve many of the quantities that one might 
expect to be preserved. Collinearity of projective points and coincidence of projec
tive lines are preserved by projective transformations, but distances between projective 
points, angles between projective lines, ratios of lengths between projective points on 
a projective line, and even "betweenness" are not preserved ! However, there is one im
portant quantity that is preserved by projective transformations, the projective version 
of the cross ratio, which will be defined shortly (Brannan, et al . [1] and Eves [5] give 
detailed proofs that the cross ratio is preserved). The cross ratio is such an important 
invariant in projective geometry that Felix Klein mentions "the widespread tendency 
in projective geometry to resolve all magnitudes which exhibit invariant character back 
to cross ratios" [12] , although he thought this was an unfortunate tendency. 

For the remainder of the paper, let A, B ,  C, and D be four collinear projective points 
in JRIP'2, and let homogeneous coordinates be chosen so that A = [a] , B = [b] , C = [c) , 
and D = [ d], where a, b, c, and d are vectors in JR3 • Since A ,  B ,  C ,  and D are collinear 
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a s  projective points i n  JRIP'2 , a ,  b, c ,  and d must lie i n  the same plane i n  JR3 • Thus, c 
and d may be represented as linear combinations of a and b. In other words, there 
exist scalars a ,  {3 , y , and 8 so that c = a a +  {Jb and d = ya + 8b. Using this notation 
[ 1 ] ,  the cross ratio (ABCD) of collinear projective points with given homogeneous 
coordinates 

(ABCD) = !!_�� = {3 y . 
a y a8 

( 1 ) 

Note that this definition collapses to the Euclidean definition if the vectors a, b, c, 
and d are themselves collinear in JR3 . To see this, observe that if a, b, c, and d are 
collinear, then c = ( 1 - t )a + tb and d = ( 1 - s)a  + sb for some scalars s and t ,  so 
that a =  1 - t ,  f3 = t ,  y = 1 - s ,  and 8 = s .  If l l v l l  is the usual Euclidean norm of v 
and (uv) gives the sign (± 1 )  assigned to the oriented line segment uv according to the 
chosen orientation of the line, then the ratio of signed distances is 

l ac l I l ad ! 
= 

(ac) l l c - a l l  I (ad) l id - a l l  

l cb l I db I (cb) l i b - e l l  (db) l i b - d l l  

t l l l b - a l l  I s l l l b - a l l  
- ( 1 - t) l l l b - a l l  ( 1 - s ) l l l b - a l l  

= �If · 

Using cross products to calculate cross ratios Recall that the cross ratio of four 
collinear points in ordinary Euclidean space can be calculated using a ratio of ratios of 
signed distances: 

IACI I IAD I IACI IDB I (ABCD) = 
I CB I IDB I 

= 
I CB I 

. 
IAD I

. 

Naively, one could attempt to calculate a cross ratio of projective points, using cross 
products , by mimicking the Euclidean formulation and attempting to calculate 

a x cl a x d  

c x b  d x b · 

Of course, vectors cannot be divided, but since a, b, c, and d are coplanar (and rooted 
at the origin), the cross products of any pair of these vectors must lie on the same line. 
Thus ,  the four vectors are scalar multiples of each other. 

THEOREM 1 . Let A, B, C, and D be four collinear points in lRlP'2, and let ho
mogeneous coordinates be chosen so that A = [a], B = [b], C = [c], and D = [d] , 
where a, b, c, and d are vectors in JR3 . Furthermore, let j and k be chosen so that 
(a x c) = j (c x b) and (a x d) = k (d x b). Then the ratio j / k is the cross ratio 
(ABCD) . 

Proof. If z = a  x b and c = aa + {Jb, then 

a x c = a x (aa + {Jb) = a (a x a) + {J (a x b) = {3z 

and 

c x b = (aa + {Jb) x b = a (a x b) + {J (b x b) = az, 
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so that 

f3 f3 
(a x c) = f3z = - (az) = - (c x b) , a a 

and therefore j = f3 I a . Similarly, k = 8 I y , so 

Jl k = I!_�� = (ABCD) . a y 

5 7  

(2) 

A related statement with a similar proof that reflects the Euclidean formulation more 
clearly is the following: 

THEOREM 2. Let A, B, C, and D be four collinear points in JRJP'2, and let homoge
neous coordinates be chosen so that A = [a], B = [b], C = [c], and D = [d]. where 
a, b, c, and d are vectors in 1R3. Then 

(ABCD) = 
(a x c) · (d x b)

. (c x b) · (a x d) 

Proof. As above, let c = aa + f3b and d = ya + 8b. Consider the ratio 

(a x c) · (d x b) 

(c x b) · (a x d) 
= 

(a x [aa + f3b]) · ( [ya + 8b] x b) 

( [aa + f3b] x b) · (a x [ya + 8b]) 

Evaluating cross products, we obtain 

f3 (a x b) · y (a x b) 
= f3 y l l a x b / 1 2  

= f3y 
= (ABCD) . a (a X b) · 8 (a X b) ao j j a X b W  ao 

Cross ratio of a pencil of four distinct lines If we have four coplanar lines in JR3 that 
intersect in a single point, we can assign to them a cross ratio that has many properties 
in common with the cross ratio of collinear points . The term pencil of lines refers to 
a set of lines that meet at a common point, so we call this the cross ratio of a pencil 
of four distinct lines (for a more detailed discussion see Eves [5] or Seidenberg [13]) .  
Given four coplanar lines l ,  m ,  n, and p that intersect at a point 0 and (Euclidean) 
points a, b, c, and d on lines l, m, n ,  and p, respectively, the cross ratio assigned to the 
set of four lines through the point 0 is denoted O(abcd) and defined as 

(abed) = . 0 
sin(a0c) I sin(a0d) sin(c0b) sin(d0b) 

It is a well-known result that the cross ratio of a pencil of four distinct lines is equal 
to the cross ratio of the four collinear points formed by the intersection of the four lines 
with any transversal [6, 13] . However, one can prove directly that the cross ratio of the 
pencil of four distinct lines is also a ratio of cross products, as shown in Theorem 3 
below. The method of proof presented here, except for the explicit use of the notation 
of cross products in the definitions of j and k, is similar to that used in more classical 
proofs about the role of the transversal . A key geometrical insight is that cross products 
may be used to calculate areas of triangles, and that when a pencil of four distinct lines 
is cut by a transversal, a collection of triangles is formed that all have the same height 
and so have areas related to the lengths of their bases. 

THEOREM 3 . Suppose four coplanar lines l, m, n, and p intersect at the origin 
0 = (0, 0, 0) in 1R3, and suppose that vectors a, b, c, and d lie on lines l, m, n, and p, 
respectively. ff j and k are chosen SO that (a X C) = j (C X b) and (a X d) = k (d X b), 
then the ratio j I k is equal to O(abcd) . 
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Proof The signed length of a x c is l l a l l l l l c l l sin(a0c) and the signed length of 
c x b is l l c l l l l l b l l  sin(c0b) . Note that here we are using the interpretation of cross 
product in which the resulting vector has a length equal to the area of the parallelogram 
constructed from the two vectors and whose direction is determined by the order of the 
operation .  If j and k are defined so that (a x c) = j (c x b) and (a x d) = k (d x b) , 
then 

l l a l l l l l c l l sin(aOc) 
j = ----------�� 

l l c l l l l l b l l sin(c0b) 

! ! a l l sin(a0d) 
Similarly, k = , so 

l l b l l sin(d0b) 

! ! a l l sin(aOc) 

l l b l l sin( cOb)
· 

. sin(aOc) I sin(a0d) 
0 d 1 / k = = (abc ) .  

sin(c0b) sin(d0b) 

(3) 

(4) 

Historical background We started with a student, desperately and creatively at
tempting to solve a problem on a final exam. We end with the delightful discovery 
that the cross ratio of projective geometry is related to the cross product of Euclidean 
geometry. The authors are particularly enamored of the third theorem, because the 
proof provides a geometric indication for why the "ratio" of cross products has any
thing to do with the cross ratio, namely that the cross ratio is a ratio of the sines of 
angles formed by the lines (or vectors) in question, while the cross product is a com
pact tool for isolating the sines of the angles between vectors or lines. We wondered 
whether there was a more than coincidental historical reason that these two definitions 
share such similar names, but sadly, this does not appear to be the case. 

The best source we have been able to find about the origins of the term "cross ratio" 
is a brief mention by Eves [5, p. 87] : 

Essentially the notation (AB , CD) 

Here the notation (AB ,  CD) is our (ABCD) . Unfortunately, the only publication we 
could find of Clifford's  in 1 878 containing the term cross ratio was his Elements of 
Dynamic [3] , where he uses it without comment, as though referring to a well-known 
usage. Other papers from 1 878 by Clifford appear in his Mathematical Papers [4] , but 
we could not find an instance of his use of the term in those works. 

The origin of the term cross product, on the other hand, seems to be related to the 
introduction by J. W. Gibbs of the notation a x b to indicate the vector product of 
vectors a and b. The notation was introduced in an unpublished pamphlet on vector 
analysis [7, p. 20] during the period 1 88 1-84 (see also Heaviside's  Electromagnetic 
Theory [10, 1 1] ) ,  and in an 1 89 1  paper he said that the notation he used was called a 
"cross" [7, p. 1 59] . The notation was popularized by Gibbs '  student E. B .  Wilson [15] 
in a book he wrote based on Gibbs '  pamphlet and lectures ;  Wilson's  text also carried 
the instruction that a x b should be read aloud as "a cross b." 

Although our formulation of cross ratios in terms of cross products does not seem to 
appear explicitly anywhere in the literature, there are several references in the literature 
that seem to relate cross ratios to cross products or cross product-like objects . 
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We are grateful to the anonymous referees for suggesting many o f  these references .  

For example, (3) appears (with a change of notation) in A.  Seidenberg 's Lectures in 
Projective Geometry [13] in his proof relating the cross ratio of a pencil of four distinct 
lines to the cross ratio of four collinear points . In addition, there are hints of results 
similar to Theorem 1 in several references. Cross products have some interesting prop
erties, including being anticommutative, nilpotent, and distributing over addition (as 
can be seen in any standard calculus text such as Stewart [14]) .  Klein [12] defines the 
cross ratio as a ratio of products of 2 x 2 determinants, which share many of the prop
erties of cross products (they "act like" cross products) .  Hermann Ernst Grassmann 
(sometimes called Grassmann the Younger, to differentiate him from his more famous 
father, Hermann Giinther Grassmann) ,  defined cross ratio, which he called double ra
tio, using a ratio of "outer products" (iiuj3ere Multiplikation) [8] . These outer products 
seem to be closely related to the "combinatorial product" developed in his father's 
book on Extension Theory [9] and were defined to have to have precisely the same 
properties as those listed above for cross products, so his definition of cross ratio is 
very similar to our Theorem 1 .  Finally, Busemann and Kelly [2] use cross products 
explicitly when discussing the fact that the cross ratio of a pencil of four lines is equal 
to the cross ratio of four points formed by the intersection of the pencil of four distinct 
lines with a transversal . 
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Proof Without Words :  
R ight Tr iang les and Geometr ic  Ser ies 

n/6 

2 

CHALLENGE: Can you create the next two rows? 

-ROGER B .  NELSEN 
LEWIS & CLARK COLLEGE 

PORTLAND, OR 972 1 9  
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Th e E u l e r-Mac l a u r i n Fo rm u l a 
a n d  S u m s  of Powers 

M I C H A E L  Z. S P I V E Y  
U n ivers i ty of Puget Sou n d  

Tacoma, W A  984 1 6 
msp ivey ® u ps . e d u  

Mathematicians have long been intrigued by the sum 1 m + 2m + . . .  + nm of the 
first n integers, where m is a nonnegative integer. The study of this sum of powers 
led Jakob Bernoulli to the discovery of Bernoulli numbers and Bernoulli polynomials .  
There are expressions for sums of powers in terms of Eulerian numbers and Stirling 
numbers [5, p. 1 99] . In addition, past articles in this MAGAZINE contain algorithms 
for producing a formula for the sum involving powers of m + I from that involving 
powers of m [l, 4] . (The algorithm in Bloom [1 ]  is actually Bernoulli 's  method. )  

This note involves a curious property concerning sums of integer powers, namely, 

( 1 )  

In other words, the sum of the m - I terms from I m to (m - l )m i s  always less than 
the single term mm , regardless of how large m is .  This inequality is not true for an 
arbitrary number of terms; 1 m + 2m + · · · + (n - l )m is not necessarily less than nm 
for all n ,  but the inequality is true when n = m .  

Proving ( 1 )  i s  not too difficult. I n  fact, one proof i s  a nice first-semester calculus 
problem using left-hand Riemann sums to underestimate the integral fom xm dx . An
other establishes (x + l )m - xm > xm for x < m via the binomial theorem; replacing 
x successively with 0 ,  I ,  2, . . .  , m - 1 and summing yields ( 1 ) . 

There is a deeper question here, though. Dividing ( 1 )  by mm produces the inequality 

(2) 

Since this relation holds regardless of the value of m,  a natural question to ask is 
this :  What is the limiting value of the expression on the left of (2) as m approaches 
infinity? Our investigation of this value involves a useful tool in any mathematician 's 
bag of tricks-one that is ,  unfortunately, not often taught in undergraduate courses
the Euler-Maclaurin formula for approximating a finite sum by an integral . Along the 
way we also prove ( 1 )  using Euler-Maclaurin, thus illustrating the use of the Euler
Maclaurin formula with remainder. 

Rota calls Euler-Maclaurin "one of the most remarkable formulas of mathematics" 
[6, p. I I ] .  After all, it shows us how to trade a finite sum for an integral . It works much 
like Taylor's formula: The equation involves an infinite series that may be truncated at 
any point, leaving an error term that can be bounded. 

The formula uses the very numbers discovered by Bernoulli during his investiga
tions into the power sum, and the error term uses Bernoulli ' s  polynomials .  For ex
ample, the second-order formula with error term is given in Concrete Mathematics [2, 
p .  469] : 
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where 

n- l r B ( ) B ( ) ka f(j ) = Jo f (x)dx + -rl- f (n ) - / (0) + 
2� f' (n) - /' (0) 

+ (- 1 )3 - B2 ( {x } )f" (x)dx , 
1 in 

2 !  0 

• B; is the i th Bernoulli number (B 1  = - 1 /2,  B2 = 1 /6), 
• B2 (x) is the second Bernoulli polynomial : x2 - x + 1 /6, 
• {x } = x - LxJ , and 

• f is twice-differentiable. 

(3) 

Since {x } is the fractional part of x, the function B2 ( {x } )  in (3) is just the periodic 
extension of the parabola B2 (x) = x2 - x + 1 /6 from [0, 1 ]  to the entire real number 
line. In other words, B2 ( {x } )  agrees with B2 (x) on [0, 1 ]  and is periodic with period 1 .  

Proving (3) involves nothing more complicated than integration by parts. A brief 

outline is as follows:  Start with ( 1 /2) J01 (y2 - y + 1 /6) g" (y) dy. Use integration by 
parts twice and solve for g (O) . Let g (y)  = f (y + j ) ,  and then substitute x for y + j to 
find an expression for f (j ) .  Sum this expression as j varies from 0 to n - 1 ,  noting that 
the terms involving f' (j)  and f' (j + 1 )  telescope, while those involving f (j + 1 )  are 
absorbed into the sum. This yields (3) ,  since B2 ( {y } )  = B2 ( {x } ) .  The interested reader 
is invited to fill in the details .  

The full Euler-Maclaurin formula with no remainder term (for infinitely differen
tiable f) is given in Concrete Mathematics [2, p. 47 1 ] :  

Unfortunately, the infinite sum o n  the right-hand side often diverges . This formula can 
also be proved using integration by parts ; Lampret, in fact, shows how to use parts to 
prove Euler-Maclaurin for arbitrary orders [3] . 

On to the proof of ( 1 ) :  We can easily verify the inequality for small values of m .  In 
particular, for m = 1 ,  we have 0 < 1 = 1 1 , and for m = 2, we have 1 2 = 1 < 4 = 22 • 
For m � 3 ,  we tum to Euler-Maclaurin. Plugging f (x )  = xm and n = m into (3) yields 

m- 1 1m 1 1 1 1m I: r  = xmdx - -mm + -m mm- ! - - B2 ( {x } )m (m - l )xm-2dx 
j= l 0 2 1 2  2! 0 

mm+ l 5 1 1m 
= -- - -mm - - B2 ( {x } )m (m - 1 )xm-2dx . m + 1 1 2  2 0 (5) 

Now, let 's deal with the error term. Completing the square on the parabola B2 (x) 
gives us B2 (x) = (x - 1 /2)2 - 1 / 1 2. This tells  us that the minimum value of B2 (x) 
on [0, 1 ]  is - 1 / 1 2, occurring at x = 1 /2, and the maximum value on [0, 1 ]  is 1 /6, oc
curring at the two endpoints x = 0 and x = 1 .  Since B2 ( {x } )  is the periodic extension 
of Bz (x) from [0, 1 ]  to the real number line, the minimum and maximum values of 
B2 ( {x } )  over the real numbers are - 1 / 1 2  and 1 /6, respectively (which, incidentally, 
occur infinitely often). This tells us that - 1 /2B2 ({x } ) :::: (- 1 /2) (- 1 / 1 2) = 1 /24. 
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Therefore, 

- B2 ({x })m (m - l )xm-2dx ::::=: - m (m - l )xm-2dx 
- 1 1m I 1m 
2 0 24 0 

m m- 1 1 m = -m = -m 24 24 
Plugging back into (5) produces 

m- 1 m+ l  5 1 � ·m m m m � J < -- - -m + -m 
j = l  - m + 1 I 2  24 

3 5 
< mm - - mm = - mm 

8 8 
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This establishes the inequality (1 ), namely 1 m + 2m + · · · + (m - l )m < mm , for all 
positive integers m,  via the second-order Euler-Maclaurin formula with remainder. 

We now move on to our main question-determining the limiting expression for 

From our proof of ( 1 ) , we know that the limit must be less than 5/8 .  To find the exact 
value we use the full Euler-Maclaurin formula (4) . For fixed m and f (x)  = xm , we 
have 

� (-} ) m I m - 1  

� = - L: r 
j= l  m mm j=O 

I 00 B 
= � + - L ___!_ u<k- l ) (m) - J<k- 1 ) (0) ) .  m + 1 mm k= l  k !  

Since J<k- I l (m) - J<k- I ) (O) is nonzero only for k ::::=: m,  this yields 

� (j_)m 
= ___!_!!___ + _I_ t Bk J<k- l ) (m) 

j = l  m m + 1 mm k= l  k !  

m 1 � [ Bk m-k+ l ( ) ] = -- + - � -m m (m - l ) · · · (m - k + 2) 
m + 1 mm k= l  k !  

m � [ Bk 1 k J = -- + � -m - (m (m - l ) · · · (m - k + 2) )  . m + 1 k= I  k !  

There are exactly k - 1 factors i n  the expression m (m - 1 )  · · · (m  - k + 2) . Thus the 
resulting polynomial is mk- I  plus a polynomial of degree k - 2. For our purposes, 
all that matters of the latter polynomial is its degree. We can therefore use "big- 0 "  
notation to express m (m - 1 )  · · · (m  - k + 2) a s  mk- I  + O (mk-2) . Here, O (mk-2)  
effectively means that the expression added to mk- I  i s  of order no larger than that of 
mk-2 .  (For a more precise definition and a discussion of big- 0 notation, see Concrete 
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Mathematics [2, p .  47 1 ] . )  Multiplying through by m 1 -k then yields the expression 
1 + 0 ( 1 /m ) . Substituting back in, we have 

m- 1  ( · ) m m B [ ( 1 ) ] I: .!_ = � + 2:: -f 1 + 0  - . 
j = 1 m m + 1 k= 1 k .  m 

Now we take the limit to get 

lim I: (j_) m 
= lim {� + t Bk� [ 1 + 0 (2.) ] ) m---+00 j= 1 m m---+00 m + 1 k= 1 . m 

� Bk . { ( 1 ) f--. Bk l = 1 + L..., ,- + J� 0 - L..., ! .  
k= 1 k .  m k= 1 k .  

The crucial question for both the second and third terms is the convergence of 

L�o Bk f k ! .  Fortunately, the infinite sum is a special case of the exponential gen
erating function for the Bernoulli numbers , 

oo xk x 
"'\:' Bk - - -L..., k ! - X - 1 ' k=O • e 

valid for !x ! < 2Jr [5, p . 1 47] . Therefore, L:;= 1 Bk f k !  is bounded by a constant, yield
ing 

lim { 0 (2.) t Bk ) = 0. m--+oo m k= 1 k !  

Since B0 = 1 ,  w e  have 

. m
L
-1 ( j )m 

L
oo Bk 

hm - - -

m--+oo . m - k !  ' J = 1 k=O 

which gives us the simple limiting expression 

lim - + - + · · · + -- = -- .  [ ( 1 )m ( 2 ) m (m - 1 )m] 1 
m--+oo m m m e - 1 

Thus, in the limit, the sum 1m + 2m + · · · + (m - l )m will represent (e - 1 ) - 1 
(ap

proximately 0.582) of mm . 
The interested reader may enjoy showing that the left-hand side of (2) actually 

increases to I j (e - 1 ) .  In addition, the excellent text Concrete Mathematics contains 
numerous further examples of the use of the Euler-Maclaurin summation formula [2, 
pp. 469-489] . 

Acknowledgment. The author would like to thank one of the referees for several helpful suggestions. 
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Proof Without Words :  
Incl usion- Excl usion for Triangu l ar N u m bers 

THEOREM . Let tk = 1 + 2 + · · · + k, to = 0. If 0 :::: a ,  b, c :::: n and 2n :::: a +  
b + c, then 

fa + tb + fc - ta+b-n - tb+c-n - fc+a-n + ta+b+c-2n = tn 
Proof. 

NOTES : 

1 .  If 0 :::: a, b, c :::: n ,  2n > a + b + c, but n :::: min(a + b, b + c, c + a) ,  then the 
identity is ta + tb + tc - ta+b-n - tb+c-n - tc+a-n + t2n-a-b-c- l  = tn , with a similar 
proof. 

2. The following special cases are of interest: 

(a) If (n ;  a, b,  c) = (2k - j ; k , k , k) ,  then 3 (tk - tj ) = t2k-j - t2j-k ; 
(b) If (n ; a ,  b, c) = (a + b + c ; 2a , 2b, 2c) ,  then t2a + t2b + t2c = ta+b+c + 

ta+b-c + ta-b+c + La+b+c ; 
(c) If (n ;  a ,  b, c) = (3k ; 2k , 2k , 2k) , then 3 (t2k - tk )  = t3k · 

Illustrations for all of these cases can be found at the MAGAZINE website. 

-ROGER B .  NELSEN 
LEWIS & CLARK COLLEGE 

PORTLAND, OR 972 1 9  
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D i sj o i nt  Pa i rs w i th D i st i n ct S u m s  

G E R H A R D  j .  W O E G I N G E R  
Department of Mathematics and Computer Science 

TU E i n dhoven 
P.O.  Box 5 1 3 , 5 600 M B  E i n dhoven, The N ether lands 

gwoegi ® w i n .tue. n l  

Klamkin and Newman [ 1 ]  investigated the maximum number N (k) o f  disjoint pairs 
of positive integers with distinct sums at most k. For instance for k = 7 the two disjoint 
pairs ( 1 ,  3) and (2, 4) have the distinct sums 4 and 6, whereas there do not exist three 
such pairs with distinct sums. Whence N (7) = 2. Klamkin and Newman proved that 
(2k - 1 3)/5  _::: N (k) _::: (2k - 1 ) /5 ,  thus leaving a small gap between the upper and 
the lower bound. We close this gap by showing that N (k) = L (2k - 1 ) /5J  for all k ::=: l .  

For the sake of completeness, let us briefly recapitulate Klamkin and Newman's  
upper bound argument [ 1 ] :  Consider N = N (k) disjoint pairs with distinct sums at 
most k ,  and let S be the sum of all 2N elements in these pairs . Since the pairs are 
disjoint, S is at least 1 + 2 + · · · + 2N = (2N + l ) N .  Since the N pair-sums are 
distinct and at most k ,  S is at most k + (k - 1 )  + (k - 2) + · · · + (k - N + 1 )  = 
(2k - N + 1 ) N  /2.  Combining these two inequalities yields N (k) _::: (2k - 1 )/5 .  

For the lower bound, we first consider the three cases where k = 5m + 3 ,  k = 
5m + 4, or k = 5m + 5 for some integer m .  Note that this implies L (2k - 1 ) /5J = 
2m + 1 .  We exhibit 2m + 1 disjoint pairs where the first coordinates cover the range 
1 ,  2 . . . .  , 2m + 1 and the second coordinates cover the range 2m + 2, . . .  , 4m + 2 :  

• The first m + 1 pairs are (j ,  3m + j + 1 ) ,  
with sums 3m + 2} + 1 ,  for 1 _::: j _::: m + 1 ;  

• the last m pairs are (m + j + 1 ,  2m + j + 1 ) ,  
with sums 3m + 2} + 2 ,  for 1 _::: j _::: m .  

Since the 2 m  + 1 pair-sums are distinct and bounded b y  5 m  + 3 ,  this demonstrates 
N (k) ::=: (2k - 1 )/5 for these three cases . In the remaining two cases, we have either 
k = 5m + 1 or k = 5m + 2 for some integer m .  We exhibit L (2k - 1 ) /5J  = 2m dis
joint pairs where the first coordinates cover the range 1 , 2, . . .  , 2m and the second 
coordinates cover the range 2m + 1 ,  . . .  , 4m : 

• The first pair is ( 1 ,  2m + 1 )  with sum 2m + 2 ;  
• the next m pairs are (j + 1 ,  3m + j) ,  

with sums 3m + 2}  + 1 ,  for 1 _::: j _::: m ;  
• the last m - 1 pairs are (m + j + 1 ,  2m + j + 1 )  

with sums 3 m  + 2} + 2 ,  for 1 _::: j _::: m - 1 .  
These 2m pair-sums are distinct and bounded by 5m + 1 .  Hence, also in these two 
cases we have N (k) ::=: (2k - 1 )/5 and the argument is complete. 
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Proposa l s  
To be considered for publication, solutions should be received by july 7 ,  2006. 
1736. There was no name on this proposal. 

Is there a triangle all of whose vertices are points with rational coordinates on the 
circle x2 + y2 = 1 and whose vertex angles are 45° ,  60° , and 75° ? 

1737. Proposed by Michael Z. Spivey, The University of Puget Sound, Tacoma, WA. 
A Pythagorean triple is an ordered triple (a , b, c) of positive integers satisfying 

a2 + b2 = c2 • The number c is called the hypotenuse of the Pythagorean triple. 

a) Prove that an even perfect number cannot be the hypotenuse of a Pythagorean triple. 

b) Prove that if there is an odd perfect number, then it is the hypotenuse of a 
Pythagorean triple. 

1738. Proposed by Jose Luis Dfaz-Barrero, Universitat Politecnica de Catalunya, 
Baracelona, Spain. 

Let n be a positive number and let ah a2 , • • •  , an and bh b2 , • • •  , bn be complex 
numbers . Prove that 

1739. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 
An object moves in the plane, starting from the origin, and at each step moving one 

unit up, down, to the right, or to the left. Find the number of such paths that stay in the 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this M AGAZINE.  Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 5001 1 ,  or mailed electronically (ideally as a I!).Tf3)(file) to 

ehjohnst@ iastate.edu. All communications should include the reader's name, full address, and an e-mail address 

and/or FAX number. 

67 
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quadrant { (x ,  y )  : x ,  y � 0} ,  and consist of a total of n steps, exactly k of which are 

vertical (up or down) . 

1740. Proposed by Michel Bataille, Rauen, France. 
Prove or disprove : there exists a scalar multiplication (z , r) � z * r from C x lR 

into lR such that (JR, +. *) is a vector space over C. 

Q u i ck ies 
Answers to the Quickies are on page 73. 
Q957. Proposed by John H. ]aroma, Austin College, Sherman, Texas. 

Let m and n be odd positive integers such that n is not a perfect square and such 
that Jn < m + 1 < Jn + 2. Prove that for positive integer k, L(m + Jnfk + 1 j  is 
divisible by 2k+ 1 • 

Q958. There was no name on this Quickie proposal. 
Let a ,  b, c be the side lengths of a nondegenerate triangle. Prove that 

a) a4 + b4 + c4 < 2 (a2b2 + b2c2 + c2a2) . 
b) a3 + b3 + c3 + 2abc < ab (a + b) + bc(b + c) +  ca (c + a) . 

Sol ut ions 
Similarity and the Centroid February 2005 

171 1 .  Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 
In triangle ABC ,  let A' be on BC,  B' on CA,  and A' on BC,  and suppose that the 

cevians AA' ,  BB' ,  and CC' meet at M.  Prove that if !:::,.ABC is similar to t:,.A' B'C' ,  
then M is the centroid of !:::,.A BC . 
Solution by Michel Bataille, Rauen, France. 

Identify the points with complex numbers, with the origin 0 coinciding with M.  
Because M is interior to  !:::,.ABC ,  there are positive real numbers a, {3 ,  y with aA + 
f3 B + y C = 0 and 

a + f3 + y = l . 

Because A'  is on B C and on line OA(= M A),  it follows that 

Simi larly, 

- a  A' = -- A . 1 - a  

B' = _2_ B 1 - {3 
- y 

and C' = -- C. 1 - y 

Because !:::,.ABC is similar to t:,.A' B'C' ,  we have 

A' - B' 
A - B 

B ' - C' 
B - C 

( 1 )  
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Substituting our expressions for A', B' , and C' this yields 

y B C  � A B  aAC aAB �BC  y A C  
-- + -- + -- - -- - -- - -- = 0. 1 - y  1 - � 1 - a 1 - a  1 - � 1 - y  

Taking ( 1 )  into account, equation (2) implies that 

BC(y2 - �2) + CA (a2 - y 2) + A B (�2 - a2) = 0, 

and then that 

(y 2 - �2) B (C - A) + (a2 - y2) A (C - B)  = 0.  

If  y 2 - �2 i= 0, then the cross-ratio 

(C - A)j (C - B) 
(0 - A) / (0 - B)  

B (C - A)  
A (C - B) 

69 

(2) 

is a real number. But this implies that M is on the circumcircle of 6ABC,  contradict
ing the fact that M is in the interior of the triangle. Thus y 2 = �2 , and a2 = y 2 as 
well .  It follows that a = � = y = �

'
and hence, that M is the centroid of 6ABC .  

Also solved by Sadi Abu-Saymeh (Jordan), Herb Bailey, Roy Barbara (Lebanon), Alper Cay ( Turkey), Daniele 
Donini (Italy), Peter Gress is, Peter E. Niiesch (Switzerland), Michael Vowe (Switzerland), Paul Weisenhorn (Ger· 
many), Tom Zerger, Li Zhou, and the proposer. There were three incorrect submissions. 

Sum and Product of Units February 2005 

1712. Proposed by William P. Wardlaw, U. S. Naval Academy, Annapolis, MD. 
For each integer m > 1 , let Zm = {0, 1 , . . .  , m - 1 }  be the ring of integers modulo 

m ,  and let Z� be the (multiplicative) group of units in Zm . Find the sum 

S(m) = L u 
U EZin 

and the product 

P (m) = fl u  
u EZ'in 

of all elements in z� . 
Solution by Jim Delany, Emeritus, California Polytechnic State University, San Luis 
Obispo, CA. 

Clearly S(2) = P (2) = 1 , so we assume that m � 3 .  
An  element u E Zm is a unit i f  and only i f  u and m are relatively prime. Thus if 

u E Z� , then m - u E Z� , and u cj= m - u because 2u = 0 (mod m) is impossible 
with m � 3 and gcd(u , m) = 1 .  Therefore in the sum 

each unit can be paired with its additive inverse, giving S (m)  = 0. 
Now let T =  {u E Z� ! u - 1 = u } .  Note that T is a subgroup of z: and let T ' = 

Z�, \ T .  We have 

P (m) = (rr u) (rr u) · 

u E T  u E T '  
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The second product i s  1 ,  because each factor can b e  paired with its multiplicative 
inverse. Thus we need only evaluate the first product. Because T is abelian and every 
nonidentity element of T is of order 2, T is a direct product of cyclic subgroups of 
order 2. Thus the order of T is a power of 2. 

Now 1 ,  - 1  E T and u E T if and only if -u E T .  By pairing each element of T 
with its additive inverse we find 

P (m) = n u = (- l ) I T I /2 = { - �  
u ET 

I T I  = 2  
otherwise 

If m = 2' , r ::: 3 ,  then 2'- 1 ± 1 E T. Thus I T I  ::: 4 and P (m) = 1 .  Next consider the 
case with m = ab with a ,  b ::: 3 and gcd(a , b) =  1 .  Note that 1 =I= - l (mod a)  and 
1 =f= - 1  (mod b) . By the Chinese Remainder Theorem, the system of equations 

x = 1 (mod a) , x = - l (mod b) 

has a unique solution x 1  modulo ab .  Similarly, the system 

x = - l (mod a) ,  x = 1 (mod b) 

also has a unique solution x2 modulo ab .  The four elements 1 ,  - 1 ,  X j , x2 E T are all 
different modulo m,  as can be seen by considering them modulo a and then modulo b .  
Thus i f  m has such a factorization, then IT  I ::: 4 and P (n )  = 1 .  The only m ::: 3 which 
are not accounted for are m = 4, m = p' , and m = 2p' , where p is an odd prime. But 
those are precisely the m for which z: is a cyclic subgroup; in the language of number 
theory, these are the values of m for which there exist primitive roots. Because a cyclic 
group has at most one element of order 2, I T  I = 2 in these cases and P (m) = - 1 .  In 
summary, for m ::: 3 ,  { - 1  P (m)  = 

1 
m = 4 or m = p' or m = 2 p' , p an odd prime, r ::: 
otherwise 

Note. Some readers calculated the sum and product in Z,  obtaining 

S(m)  = ¢ (m) 
2 and 

( f ) f1(m/d) 
P (m)  = m<P<m > n !dd 

d im d .  

The result for P (m) can also b e  found i n  Theorem 1 29 i n  G .  H. Hardy and E .  M. 
Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford University 
Press, Oxford, 1 979, and in Oystein Ore, Number Theory and Its History, McGraw
Hill  Co. ,  1 948.  See also problem E 2080 in The American Mathematical Monthly, Vol. 
76, ( 1 969), 4 1 7-4 1 8 .  

Also solved by Hamza Ahmad, Tsehaye Andeberhan. Roy Barbara (Lebanon), S. Floyd Barger, Michel 
Bataille (France), Jean Bogaert (Belgium), Robert Calcaterra, Minh Can, Wenchang Chu and Pierluigi Magli 
(Italy), Con Amore Problem Group (Denmark), Robert L. Doucette, Gregory P Dresden, Dmitry Fleischman, 
Michael Goldenberg and Mark Kaplan, G.R.A.20 Math Problems Group (Italy), Ralph P Grimaldi and Kenneth 
W McMurdy, Natalia H. Guersenzvaig (Argentina), Lee 0. Hagglund, Hannah Harding, Mitch Harris, Russell 

Jay Hendel, Colonel Johnson Jr. and students V Gant and Q. Jacobs and A. Paul and L. Raphael and L. Rydell,  
Stn·en Klee, Harris Kwong, Elias Lampakis (Greece), Daniel R. Patten, Manuel Reyes, Henry Ricardo, Rolf 
Richberg (Germany), Daniel Shapiro, Nicholas C. Singer, Doug Wilcock, Michael Woltermann, Bill Yankosky 
and the NCWC Mathematics Senior Seminar Class, Li Zhou, and the proposer. 

Inverse Binomial Sum February 2005 

1713. Proposed by Shawn Hedman and David Rose, Florida Southern College, Lake
land, FL. 
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Prove that 

Many readers provided a solution along the following lines. 

Interchanging the order of summation we have 

� (� G) -) = � (�2 G) -) 
= f (___!!:.__ f k - 1 ) 

k=2 k - 1 n=k+2 P (n , k) 

00 ( k! 00 ( 1 I )) = {; k - 1 n�2 P (n - l , k - l )
-

P (n , k - l )  

(X) k !  1 = {; k - 1 . P (k + 1 , k - 1 )  

7 1  

Note. This problem appeared i n  The College Mathematics Journal, Vol .  30, No. 5 ,  
(November 1 999), 409-410, and, i n  slightly altered form, in the article "Infinite Se
ries with Binomial Coefficients" by Courtney Moen, Mathematics Magazine, Vol .  64, 
No. I, (Feb. 1 99 1 ) , 53-55 .  

Also solved by JPV A bad. Reza Akhlaghi, Tsehaye Andeberhan, Michael Andreoli, Michel Bataille (France), 
Jean Bogaert (Belgium), Paul Bracken and Nadi Cantrall, Brian Bradie, A lper Cay (Turkey), John Christo
pher, Wenchang Chu (Italy), Con Amore Problem Group (Denmark), Chip Curtis, Knut Dale ( Nonvay ), Charles 
R. Diminnie, Daniele Donini (Italy), Robert L. Doucette, Michael Goldenberg and Mark Kaplan, G.R.A.20 
Math Problems Group (Italy). Mowaffaq Hajja (Jordan), Mitch Harris, Russell Jay Hendel, James C. Hickman, 
Houghton College Math Club, Harris Kwong, Elias Lampakis (Greece), Carl Libis, Peter W. Lindstrom, James 
Marengo, Kim Mcinturff, Rob Pratt, Muneer Ahmad Rashid (Australia), Henry Ricardo, Rolf Richberg (Ger
many). Volkhard Schindler (Germany), Heinz-Jiirgen Seiffert (Germany). Nicholas C. Singer, Byron Siu, Christo
pher J. Smith, John W. Spellman and Ricardo M. Torrej6n, Albert Stadler (Switzerland), Fernand R. Tessier 
(Kuwait), Michael Vowe (Switzerland), Paul Weisenborn (Germany), Li Zhou, and the proposer. 

A Lower Bound February 2005 

1714. Mohammed Aassila, Strasbourg, France. 

Let m,  n, x, y, z be positive real numbers with x + y + z = I .  Prove that 

x4 y4 24 -------- + + > 
(mx + ny) (my + nx) (my + nz) (mz + ny) (mz + nx) (mx + nz) 3 (m + n )2 · 

Solution by Robert L. Doucette, McNeese State University, Lake Charles, LA. 

Applying the inequality 

4 
> -----,-2 , a , b  > 0, 

(a + b) ab 
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to each term on the left side of the inequality yields 

x4 Y4 z4 --------------- + + ---------------
(mx + ny) (my + nx)  (my + nz) (mz + ny) (mz + nx) (mx + nz) 

�4 4� 4� 
> + + ---------------;;-

(mx + ny + my +  nx)2 (my + nz + mz + ny)2 (mz + nx + mx + nz)2 

= 4 ( x4 + Y4 + z4 ) (3) 
(m + n f (x + y ) 2 (y + z)2 (z + x )2 · 

Next use two applications of the Cauchy-Schwarz inequality to see 

so 

l = x + y + z  

� Jx + y + �FY+Z + �Vz+X 
y -" T Y v Y + z  y <. T X  

< (� + _t_ + ___£__) 1 /2 (x + y + y + z + z + X) I /2 
x + y  y + z z + x 

( 2 2 2 ) 1 /2 = h 1 · -x- + 1 · -Y- + 1 - -
2
-

x + y  y + z z + x 

< 
h-Y3 X + y + Z ' ( 

4 4 4 ) 1 /4 - (x + Y ) 2 (y + z)2 (z + x )2 

x4 Y4 z4 1 ------ + + > --
(x + y)2 (y + z)2 (z + x)2 - 1 2 

Combining ( 1 )  and (2) gives the desired result. 

(4) 

A lso solved by A rkady Aft, Tsehaye Andeberhan, Michel Bataille (France), Erhard Braune (Austria), Minh 
Can, Alper Cay (Turkey), Wenchang Chu (Italy), Daniele Donini (Italy), Charles R. Diminnie, Elnur Em· 
rah ( Turkey), Michael Goldenberg and Mark Kaplan, Elias Lampakis (Greece), Phil McCartney, Michael G. 
Neubauer, Northwestern University Math Problem Solving Group, Rolf Richberg (Germany), Heinz-Jiirgen 
Seiffert (Germany), Achilleas Sinefakopoulos, Paul Weisenhorn (Germany), Ding Ya-yuan and Guo Yao-Hong 
(Ch ina), Li Zhou. and the proposer. 

What Did You Expect? February 2005 

1715. Proposed by Barthel Wayne Huff, Salt Lake City, UT. 
An urn contains 35 red balls, labeled 1 ,  2,  . . .  , 35 ,  and k blue balls .  Balls are drawn 

one at a time at random, identified by number, then replaced, until a blue ball is drawn. 
Some red balls may be drawn more than once before the first blue is drawn. What is 
the minimal value of k for which the expected number of repetitions is less than l ?  

Solution by C. Ray Rosentrater, Westmont College, Santa Barbara, CA. 
We analyze the more general problem in which there are m red balls and k blue 

balls .  Suppose that n red balls are drawn (with replacement) and let Dn denote the 
number of distinct balls drawn. Then conditioning on whether the (n + l ) st ball is 
different from each of the first n drawn, we have 
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= t j P [Dn = j]  + t ( 1 - �)  P [Dn = j ]  

= ( 1 - �) E [D11 ] + 1 .  

Noting that E[D0] = 0, it follows by induction that E[Dn ]  = m ( I - q " ) ,  where 

I q = I - - . 
m 

Now let 

m 
p =  m + k 
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be the probability that a red ball is  selected for a particular draw. Then the number 
n of red balls drawn before the first blue ball is  selected has a geometric distribution 
with probability density function f given by f (n) = p11 ( l  - p) and expected value 
1 � 

P
. Because the number of repetitions in n draws i s  n - Dn , the expected number of 

repetitions before drawing the first blue ball is 

00 
E [R] = :Len - E[D11 ] )p11 ( l - p) 

n=O 
00 

= _P _ _ L m ( I  _ qn )pn ( l - p) 
I - P n=O 

p I m 
= -- - m + m ( 1 - p)-- = ---1 - p I - pq k (k + I ) 

This expected value is less than 1 if and only if m < k (k + 1 ) , that is ,  if and only if 

k 2: � ( v'4m + I  - 1 ) . 

With m = 35 ,  this becomes 

k 2: � (  v'l41 - 1 ) � 5 .44. 

Thus, if there are 35  red balls, then the minimal number of blue balls for which the 
expected number of repetitions is less than 1 is k = 6. 

Also solved by, Jack Abad, Michael Andreoli, Herb Bailey, Frederick H .  Chen, Randall J. Covill, Daniele 
Donini (Italy), Robert L. Doucette, Jerrold W Grossman, Houghton College Math Club, Kathleen E. Lewis, Rob 
Pratt, Dexter Senft, Nicholas C. Singer, Albert Stadler (Switzerland), and the proposer. There were six incorrect 
submissions. 

Answers 
Solutions to the Quickies from page 68. 
A957. Observe that 

(m ± ,Jfi)2k = ( (m2 + n )  ± 2m,Jfi)k = (2L ± 2m,Jri)k = 2k M ± 2k N ,Jfi, 
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for some positive integers L ,  M, N .  Because n i s  not a perfect square and 

Jn < m + 1 < Jn + 2, 

it fol lows that l m  - v'nl < 1 .  Thus 

2k+ I M = (m + Jn)2k + (m - Jn)2k = L (m + Jn)2k + l j .  

A958. Let p = � (a + b + c) and note that because the triangle is nondegenerate, 
p - a, p - b, p - c are all positive. Part a) follows by observing that 

2(a2b2 + b2c2 + c2a2 ) - a4 - b4 - c4 
0 < p(p - a) (p - b) (p - c) = 

1 6  
, 

Part b) follows from 

0 < (p - a) (p - b) (p - c) 
ab(a + b) +  bc(b + c) +  ca (c + a) - a3 - b3 - c3 - 2abc 

8 

The E i ghtfo ld  Way ! ,  L i e  A lgebra, and Sp ider H u nt ing  i n  the Dark2 

Spider, spider, burning bright 
Like a beacon in the night, 

What algebraist in the skies 
Gave you eight legs and then eight eyes? 

Was Buddha watching you at play 
When he conceived the Eightfold Way? 

And did your eightness give a key 
To Gell-Mann: quarks and SU3? 

--J . D .  MEMORY 
PROFESSOR OF PHYSICS , EMERITUS 

NORTH CAROLINA STATE UNIVERSITY 
jmemory @ nc.rr.com 

I .  Geli-Mann originally dubbed his quark theory of hadrons (strongly interacting particles) as the 

"Eightfold Way" in allusion to the Buddha's prescription for the path to enlightenment, because he was 

able to relate a family of eight hadrons to the eight generators of the Lie-group SU3 (special unitary group 

in three dimensions) .  

2 .  For those unfamiliar with this  childhood pastime, one can locate a spider at a considerable distance 

at night by looking down the beam of a flashlight. They gleam brilliantly. 



R E V I E W S  

PAU L  J .  CAM P B E LL,  Editor 
Be lo i t  Col lege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selectedfor this 
section to call attention to interesting mathematical exposition that occurs outside the main
stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Numb3rs. Television series on CBS,  1 0  P. M .  ET & PT Fridays.  1 3  episodes in Spring 2005 , 
24 episodes 2005-06. Created by Cheryl Heuton and Nick Falacci, with Ridley Scott and 
Tony Scott as executive producers . Different writers and directors for each episode. Stars 
Rob Morrow, David Krumholtz, Judd Hirsch, and others . Home page : http : I /www . cbs . c om/ 

primet ime/numb3rs/ index . shtml . Episode summaries: www . numb3rs . org/ spo ilers . htm, 

http : I /www . tv . com/numb3rs / show/25043/ep i s ode_guide . html . List of al l the mathe
matics and science concepts used in the series, with links to on-line sources : http : I /www . 

redhawke . org/ cont ent /blogcat egory /5/34/ . Mathematical comments on the epsisodes by 
Mark Bridger (Mathematics Dept. ,  Northeastern University) :  http : I /www . at sweb . neu . edu/ 

math/ cp/blog/. 

"We all use math every day: to predict the weather, to tell time, to handle money. Math is more 
than formulas and equations .  It's logic, it 's rationality, it's using your mind to solve the biggest 
mysteries we know." Every episode of Numb3rs, arguably the smartest show on TV (and not just 
because of the math), begins with this "public service announcement" on behalf of mathemat
ics. At last there is a TV show with a mathematician as a lead character ! It is  a Nielsen top-30 
show and number one on Friday nights . I missed it last spring while in Germany (where those 
episodes played this past fall ,  dubbed) . The premise is that Charlie Eppes, young "genius" pro
fessor of mathematics at "CalSci" in L.A. ,  helps his FBI-agent brother Don catch criminals .  The 
mathematics of telling time and handling money may be the banal hook of familiarity to make 
the audience comfortable, but Charlie actually uses advanced mathematics-very briefly but 
cleverly exposited in the episodes-to help solve cases . Moreover, he is presented as an actual 
person with friends and family and as someone to be admired. The series intends to highl ight 
different ways of thinking of the two brothers: "highly ordered logical intuition" (FBI agent) 
vs. "logic and evidence" (mathematician) .  Critics like the premise, the acting, and the story 
lines; and the mathematics is right-Gary Lorden (Chair, Mathematics Dept. , Cal tech) vets the 
mathematical content of the scripts. Texas Instruments provides an "inspirational" poster for 
teachers ("We all use," etc . ,  in huge letters) plus high-school-level lesson plans in advance of 
episodes.  Mark Bridger's blog, however, gives fuller exposition of the mathematics involved. 
What should mathematicians make of their "breakthrough" into mainline media, with a mid
season show popular enough to get renewed at least through this spring? That 's  hard for me to 
discern. So far, no one (friends, neighbors, acquaintances, co-workers) has asked what 1 think 
about the series, except for one student, who succeeds in rallying only non-math majors to 
watch episodes.  (Do math majors have better things to do on Friday evenings? Do they see 
mathematics as relevant to their lives outside the classroom?) It is easy for a mathematician to 
scoff at glibness in Charlie 's  lines or to note that his physicist colleague Larry sometimes has 
quicker insights. But are we mathematicians making the most of what may be the opportunity 
of a lifetime? Dialogue with students about Numb3rs is a natural opportunity that could help 
increase the number of bachelor's  degrees in the mathematical sciences, as the CUPM Curricu
lum Guide 2004 (http : I /www . maa . org/ cupm/) recommends. Sure, trying to  explain on short 
notice some of the mathematics behind episodes might be demanding, but Bridger's blog is a 
helpful crutch. Why not try it, even on an informal basis, for the rest of this spring? (Thanks to 
Bill Nye the Science Guy for inspiring this series;  may his science show for kids return to PB S 
and rerun forever. And thanks to Sarah Price for recording episodes.)  
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N E W S  A N D L E T T E R S 

66th An nua l  Wi l l i am Lowe l l Putnam 
Mathemati ca l Competi t ion 

Editors Note : Additional solutions will b e  printed i n  the Monthly later i n  the year. 

P R O B L E M S  

Al. Show that every positive integer is a sum o f  one or more numbers o f  the form 2 '  3s , 
where r and s are nonnegative integers and no summand divides another. (For example, 23 = 
9 + 8 + 6. )  

A2. Let S = { (a , b) la  = 1 ,  2 ,  . . .  , n ,  b = 1 ,  2 ,  3} .  A rook tour of S is a polygonal path made 
up of line segments connecting points P I , pz , . . .  , P3n in sequence such that (i ) p; E S, ( i i ) p; 
and Pi + I are a unit distance apart, for 1 ::; i < 3n ,  (i i i )  for each p E S there is a unique i such 
that Pi = p. How many rook tours are there that begin at ( 1 ,  1) and end at (n , 1 ) ?  (An example 
of such a rook tour for n = 5 is depicted below.) 

A3. Let p (z) be a polynomial of degree n :::: 1 ,  all of whose zeros have absolute value 1 in 
the complex plane. Put g (z) = p (z) /zn12 . Show that all zeros of g' (z ) have absolute value I .  
A4. Let H be an n x n matrix all of whose entries are ± 1 and whose rows are mutually 
orthogonal . Suppose H has an a x b sub matrix whose entries are all 1 .  Show that ab ::; n .  

AS Evaluate f 1 In (x+ I l dx • Jo x2 + J · 

A6. Let n be given, n ::=: 4, and suppose that P1 , Pz , . . .  , Pn are n randomly, independently 
and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the Pi . 
What is the probability that at least one of the vertex angles of this polygon is acute? 

Bl.  Find a nonzero polynomial P (x ,  y) such that P ( LaJ , L2aj ) = 0 for all real numbers a .  
(Note: L v  j i s  the greatest integer less than or equal to v . )  
B2. Find all positive integers n ,  k 1 , . . .  , kn such that k 1 + · · · + kn = 5n - 4 and 

1 1 
- + · · · + - = ! . 
k 1 kn 

B3. Find all differentiable functions f : (0, oo) --+ (0, oo) for which there is a positive real 
number a such that 

1 (a ) X 
f ; = 

f (x ) 

for all x > 0. 

B4. For positive integers m and n, let f (m ,  n )  denote the number of n-tuples (X I , xz , . . .  , Xn ) 
of integers such that l x i i + l xz l + · · · + l xn I :5: m .  Show that f(m,  n )  = f (n ,  m ) .  

BS. Let P (x i , . . .  , Xn ) denote a polynomial with real coefficients i n  the variables X I , . . . , Xn , 
and suppose that 
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(a) ( a"
2
2 + · · · + a2

2 ) P (x J , . . .  , xn ) = 0  x l axn 
(b) x? + · · · + x; divides P (x1 , . . . , x11 ) .  

Show that P = 0 identically. 

7 7  
(identically) and that 

B6. Let Sn denote the set of all permutations of the numbers 1 ,  2, . . .  , n .  For rr E S11 , let 
17 (rr ) = l if rr is an even permutation and 17 (rr ) = - J if rr is an odd permutation. Also, let 

v (rr ) denote the number of fixed points of rr .  Show that 

S OLUTIONS 

L 17 (7r) = ( - l )n+ l _n _ _  

rrES, v (rr ) + l n + l  

Solution to AI. We argue by induction. Clearly l = 2°3°, so the number 1 is represented. 
If n is even, then by the induction hypothesis n/2 has such a representation, and it suffices 
to multiply each summand by 2.  Suppose n is  odd, and let k be the largest integer such that 
3k � n. If n = 3k ,  then we are done. If 3k < n < 3k+ l ,  then m = (n - 3k )/2 is a positive 
integer. Since m < n, it follows by the inductive hypothesis that we can write m = Li 2r; 35i . 
Then n = 3k + Li 2r; + l 3s; . It remains to show that no summand divides another. Using the 
inductive hypothesis, zr; + l 3s; divides 2rJ + 1 35i only when i = j. Also, 2r; + 1 3"'i does not divide 
3k because 2 is a factor of 2r; + 1 3s; but not a factor of 3k . Finally, m = (n - 3k ) /2 < (3k+ 1 -
3k ) /2 = 3k . Thus, 2r; + 1 3'; < 3k and therefore 3k does not divide 2r; + 1 3s; . 
Solution to A2. Let T (n) be the number of rook tours of 511 == S that begin at ( l ,  l )  and 
end at (n , l )  and of these, let T H (n) and Tv (n) be the number whose first move is horizontal 
or vertical respectively. Similarly, let U (n) be the number of rook tours of Sn that begin at 
( 1 ,  l )  and end at (n , 3) ,  and of these, let UH (n ) and Uv (n ) be the number whose first move is 
horizontal or vertical respectively. 

Clearly, for n :::: 3, 

T (n )  = TH (n ) + Tv (n) and U (n )  = UH (n) + Uv (n) ,  ( I )  
and 

Tv (n) = U (n - 1 )  and Uv (n) = T (n - I ) .  (2) 

But in addition, 

TH (n) = T (n - 1 )  and UH (n) = U (n - 1 ) .  (3) 

For the first of these claims, note that a rook tour counted by T H (n) must contain line segments 
connecting points (2, 2), ( 1 ,  2), ( 1 ,  3), (2, 3) .  Replace these with the single segment from (2, 2) 
to (2, 3) and remove the segment from ( 1 ,  1 )  to (2, 1 )  to obtain a rook tour counted by T (n - l ) .  
This construction i s  reversible. The argument for the second claim i s  similar. 

Substituting (2) and (3)  into ( 1 )  yields T (n )  = U (n - 1 )  + T (n - l )  = U (n )  and now, from 
the fact that T (2) = U (2) = 1 ,  it easily follows that T (n)  = 2 T (n - 1 )  = 2"-2 •  
Solution to A3. Write p (z) = c(z - Z J ) (z - Z2) · · · (z - Zn ) .  I f  l z l < 1 (resp. ,  l z l > 1 ) , 
then 

so that 

which is to say, 

Re (t 
z � Zk ) k= l 

n 
< -

2 
(resp. ,  > �) , 
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So, for l z l -:f. 1 ,  
zp' (z) 

-:f. � -p (z) 2 

B ut g (z) = p(z)z-n
/2 ,  so 

g' (z) 
_ 

p' (z) n 
_ 

1 

(
zp' (z) n ) 

g (z) - p (z) - 2z - � p(z) - 2 · 

So, from the first paragraph, l z l -:f. 1 implies g' (z) -:f. 0. 

Solution to A4. Let M denote the n x n matrix obtained by dividing each element of H 
by Jn,. Thus M is an orthogonal matrix ,  which is to say that the rows m1 , . . .  , mn form an 
orthonormal basis for Rn . Consequently, any v E Rn is uniquely expressed as a linear combi
nation of the mj . v = c 1m 1  + · · · + cnmn . the c ;  are given by the formula c; = v · m; , and 
by Pythagoras cf + · · · + c� = l l v l l 2 .  Let I and J be intervals chosen so that the submatrix in 
question is obtained by restricting i to I and j to J .  Take v = [ vd s o  that v j = l for j E J and 
Vj = 0 otherwise. Then l l v l l 2  = b, and c; = biJn for i E I .  Thus the left hand side above is  
2:: ah2 In.  Hence ab2 I n  :=:: b, which gives the result. 

Solution to AS. We make the change of variable u = arctan x .  Then du = dxl ( l  + x2) and 
x = tan u. Hence the integral in question is 

t'/4 Jo ln ( l  + tan u )  du . 

But 1 + tan u = (sin u + cos u )  I cos u ,  so the above is 

r/4 r/4 = Jo ln(sin u + cos u ) du - Jo ln cos u du .  

But 

cos(;rr 14 - u) = cos (;rr 14) cos u + sin(;rr 14) sin u = (sin u + cos u)l h. 
Hence ( l )  is 

;rr 

1rr
/4 

lorr
/4 = - ln 2 +  ln(cos (;rrl4 - u)) du - ln cos u du .  8 0 0 

( 1 )  

Here the last two integrals are equal, as we see by making the change of variable v = ;rr I 4 - u 
in the first one. Hence 1 1 ln(x + l ) 

_
;rr 

2 dx - - ln 2 . 
0 X + 1 8 

Solution to A6. We first prove a simple lemma. 

LEMMA . For n 2:: 4 and an n-gon Q inscribed in a circle, if the angles at two vertices of Q 
are acute, then the vertices must be adjacent in Q .  Hence there are at most two vertices of Q 
with an acute angle. 

Proof of Lemma. Suppose A and D are nonadjacent vertices of Q .  Then proceeding coun
terclockwise around the circle starting at A, we must have a first vertex B after A and a last 
vertex C before reaching D, with possibly B = C. Continuing, there must be a first vertex E 
after D and a last vertex F before returning to A,  with possibly E = F. Let m(X h  be the angle 
measure of the arc counterclockwise around the circle from X to Y. Then the points in counter
clockwise order are A, B ,  C, D, E ,  and F possibly with B = C, where we take m dJC )  = 0, 
or with E = F, where we take m (EF )  = 0. Note that LA is  inscribed in the arc from B to F 
so has measure one-half of m (BF) .  Likewise L D  has measure one-half of m (EC) .  Hence 
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m(LA) + m (L D) = ! <m (BF) + m (EC)) 
= ! (m (BC) + m (CD ) + m (DE ) + m (Ei<) 

+ m (Ei<) + m USt ) + m (AB ) + m (BC))  
:::: ! (m (BC) + m (CD) + m (DE) + m (EF) + m (FA )  + m CA1n )  
= 7T .  
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Since the sum of LA and L D i s  at  least n ,  at  most one of  these can be less than n /2, that i s ,  
a t  most one is  acute. If there were more than two vertices with acute angles in Q ,  then two of 
these would not be adjacent, contradicting the preceding analysis. Hence at  most two vertices 
of Q can have acute angles, and then only if the two vertices having acute angles are adjacent. 

For n :::: 4, let X 1 ,  X2 , . . .  , Xn be the n points. Let E;j be the event that X j is  the next vertex 
counterclockwise from X; , LX; is acute, but LXj is not. Then the events Eij are mutually 
exclusive and include all of the cases where Q has an acute angle. If there are two acute angles 
on Q,  say at X; and Xt . then Xk is  adjacent to X; , and if Xk i s  clockwise from X; , say, and Xj 
is counterclockwise from X; , then Eij holds. 

By symmetry, the probability of the events Eij are equal, so we may as well compute the 
probability of E 1 2 .  By symmetry, this probability is independent of the location of X I · but given 
X 1 ,  it is a function of e = m(X'7X2 ) , uniformly distributed between 0 and 2n . If e :::: n and 
X2 was the next point counterclockwise from X 1 , then LX2 is acute and £1 2  fails.  Assume 
e < n and let X� be the antipodal point to X1 and X� the antipodal point to X2 . Then £1 2  holds 
if and only if the points X3 to Xn all lie on the arc from X2 counterclockwise to X�, so that 
X2 is the first point counterclockwise from X 1 and LX 1 is acute, but not all these lie on the 
arc counterclockwise from x; to x; , so that LX2 is  acute. Since the X3 to Xn are uniformly 
distributed independent of XI and x2 , the probability of £ 1 2  given angle e is (m (X;'X� ) ) n-

2 (m (X;X� ) ) n-2 
I ( e ) n-2 

P (EdB) = 2n 
- 2n 

= 2n-2 - 2n 

Hence the probability of E 1 2  is  

t' [ 1 ( e ) n-2] de 1 1 P(£!2 ) = Jo 2n-2 - 2n 2n 
= 2n- I -

(n - 1 )2n- I . 

Hence the probability P that some angle is acute is  

n (n - 2) P = n (n - l ) P (£ 1 2) = 1 . 2n-
Solution to Bl. One such polynomial is  P (x ,  y) = (2x - y) (2x - y + 1 ) .  To see this ,  let 
a be a real number and n = laJ . If a E [n , n + ! ) then l2aJ = 2 laJ so P ( laj , l2aJ ) = 0. If 

a E [n + ! ,  n + 1 )  then l2aJ = 2 laJ + I ,  so once again P ( laJ , l2aj ) = 0. 
Solution to B2. The possible solutions are 

n = I , k 1  = 1 ,  
n = 3 ,  {ki , k2 . k3 } = {2 ,  3 ,  6 } ,  
n = 4, k 1  = k2 = k3 = k4 = 4. 

From the arithmetic mean-harmonic mean (or Cauchy-Schwarz) inequality, 

(k i + · · · + kn ) (:I + · · · + k� )  :=:: n
2 , ( l )  

with equality if and only i f  k 1  = · · · = kn . Hence 5 n  - 4 :::: n 2 , which i s  equivalent to 
(n - I ) (n - 4) _::: 0. Thus n E { 1 ,  2, 3, 4} . For n = 1 or n = 4, we have equality in ( 1 ) , so 
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k 1  = · · · = kn . We obtain the solutions n = 1 ,  k ,  = 1 ,  and n = 4 ,  k ,  = kz = k3 = k4 = 4. 
We are left with the cases n = 2 and n = 3. For n = 2, the system of equations k 1  + k2 = 6,  
1 /  k ,  + 1/ kz = 1 is not  solvable in positive integers. For n = 3 ,  we seek the triples (k , , kz , k3 ) 
such that k ,  + kz + k3 = 1 1  and 1 /  k ,  + 1 /  kz + 1 /  k3 = 1 . Let k 1 k2 + k2k3 + k3k 1  = k 1 k2k3 = 
q .  Then k 1 , k2 , k3 are positive integral solutions to the equation x3 - 1 l x2 + qx - q = 0. It 
follows that a solution x is an integer different from 1 and 1 1 , and that 

-x3 + l lx2 1 0 q =  = -x2 + 10x + 1 0 + -- . x - 1 x - 1  

B ecause q is a positive integer, x - 1 is  a positive divisor of 1 0 and different from 1 0 . Then 
x - 1 E { 1 , 2, 5 } ,  so x E {2 ,  3 ,  6 } .  A simple case analysis shows that { k 1 , k2 , k3 } = {2 ,  3 ,  6 } . 

Solution to B3. Taking the derivative of each side of f ' (x) = af (xf ( '; )) yields 

, -a [f ( '; ) + xf' ( i- ) (- �) ] 
f (x) = 

x2 (! ( ';- ) )
2 

or equivalently, 

-a [ xPw + 7 ( yfu)] 
x2 Czc;'�x))2 ) 

= [- f(x ) 
+ 

xf' (x ) ] 
f' (x) xf (x) xf (x) 

J" (x )  1 f' (x)  -- = - - + -- . 
f' (x) x f (x) 

Thus In j' (x)  = - ln x + ln f (x)  + ln c for some c > 0, which is the same as 

f' (x) c 
f(x) 

=
:; 

Another anti derivative gives ln f (x) = c ln x + ln d for some d > 0, and it follows that f (x) = 
dx' " .  Substituting into the original equation yields 

(
a 

)c- 1 1 cd - = --x dxc- l 
. 1 

or eqUivalently, d2 = --1 , and therefore 
cac-

(x) = x = - -f 
1 c �( X ) c 

-Jc a <c- 1 )  c .j(i c > 0.  

Solution to B4. Let  F(m ,n )  denote the set of  lattice points (X J , X2 , . . . ' Xn ) in  zn such that 
\ X J \ + \x2 \ + · · · + \ xn \ � m, and define a mapping fP(m ,n )  : F(m.n )  -+ F(n ,m)  as follows. Let 
x be an arbitrary element of F(m,n ) • and reading from right to left in x, denote the nonzero 
coordinates by a 1 , a2 , . . .  , ak ; that is ,  

x = (0 ,  0 ,  0 ,  . . .  , 0 ,  ak .  0 ,  0 ,  . . .  , 0 ,  ak- 1 , . . .  , a2 , 0, 0 ,  . . .  , 0 ,  a , ,  0 , 0, . . .  , 0) 
"-,.-.' '-,.--' '-,.--' '-,.--' 

a l bk I l b2 I lb J I  
where for each i ,  b; is  chosen to have the same sign as a; , and a is chosen so that 
a +  l b i \ + \ b2 \ + · · · \ bk l = n (note that a :::: 0 because x is an n-tuple) . Now define 
fPlm ,n ) (X ) = (Y I , Y2 ,  . . . Ym ) to be 
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(0, 0,  0 ,  0 0 0 ' 0, bk ' 0, 0, 0 0 0 ' 0) ' bk- 1 '  0 0 0 ' b2 ' 0, 0, 0 0 0 0, b , ' 0, 0, 0 0 0 ' 0)) 
'-v-' '-..-' --..- '-..-' 

b lak l la2 1 [a i l  

8 1  

where b is chosen so that b + la 1 l + la2 l  + · · · + lak l  = m (note that b 2: 0 because l a 1 l + 
la2 l  + · · · + lak I = lx 1 l + lx2 l  + · · · lxn I s m ). Also, note that this element is in F(n .m )  because 
it is an m -tuple and I Y l l + I Y2 I  + · o o i Ym I = l b J i + l h2 l  + · · · + l bk l  s n .  

It i s  easy to check that (/!(m ,n )  o (/!(n ,m )  and (/!(n ,m )  o (/!(m ,n )  are identity functions, s o  the corre
spondence is one-to-one and onto. It follows that f (m ,  n) = f (n ,  m ) .  

Solution to BS. Write P = Lk Pk where Pk is homogeneous of degree k. If P has the 
required properties, then each of the Pk does. Thus we may assume that P is homogeneous, say 
of degree d .  We note that if i 1 + · · · + in = j ,  + · · · jn , then 

So if 

P =  

then 

if i 1  = j, ,  . . .  , in = jn ,  
otherwise. 

L a (i )2x; 1  0 0  · x�n . 
i 1 ,  . . .  , in , ik 2: 0 

:L h = d  
We note that the above is a strictly positive constant unless a (i )  = 0 for all i . Suppose that P is 
not identically zero, let S = xf + · · · + x; , and suppose that S divides P, say P = S Q .  Put 

R = ( a2
2 + 0 0 0 + 

a2
2 ) p (x I ' 0 0 0 ' Xn ) 0 

ax, axn 

Then R is not identically zero, because 

= P (�. 0 0 . ,  �) P (X J , . . .  , Xn ) > 0. 
ax, axn 

Solution to B6. Let t be a real variable, and let A (t) = [aij ] denote the n x n matrix for 
which au = t and aij = 1 for i -:f=. j .  We show first that 

det A (t ) = (t + n - l ) (t - l )n- 1 . ( 1 )  
To see this ,  add rows 2 through n to the first row. This does not change the determinant. The 
resulting entries in the first row are all t + n - 1 .  Factor this out. In the remaining matrix ,  all 
entries in the first row are 1 .  Subtract the first row from each of rows 2 through n. The result is 
that in rows 2 through n , all non-diagonal entries are 0, and the diagonal entries are t - 1 .  Since 
this matrix is upper triangular, it is clear that it has determinant (t - l )n- 1 • Thus we have ( 1 ) . 

In general , det[aij ] = Ln ESn ( - l )" (n) n7= 1 a;n(i ) · On applying this to A (t ) ,  we find that 

L ( - l )" (n) t v (n ) = (t - I t + n (t - l )n - l . 
rrESn 

Now integrate the above from 0 to 1 to obtain the stated identity. 



The Contest P rob l e m  Book V I I 
Amer ican Mathemat ics  Compet i t ions  
1 995 -2 000 Contests 
Com p i l ed a n d  augmented by H a ro l d  Re i ter  
T h i s  is  t h e  seventh book o f  problems and 
sol ut ions from the Mathematics Competit ions 
(publ ished by the MAA. 

Contest Problem Book VII chron icles 275 
problems from the American Mathematics 

Com petit ions (AMC 1 2  and AMC 1 0 for the years 1 995 
through 2000 , i nc l u d i n g  the 50th Ann ive rsary A H S M E  issued 
i n  1999.  Twenty-th ree addit ional problems with solut ions are 
i ncl uded . A P roblem I ndex classif ies the 275 problems i n  to the 
fo l lowi n g  s u bject areas : Algeb ra ,  Complex N u m bers,  D iscrete 
Mathematics ( i nc l u d i n g  Cou nti ng Problems) , Log ic,  and 
D iscrete P robab i l ity, Geometry ( i nc lud ing  Th ree Di mensional  
Geometry) , N u m b e r  Theory ( i n c l u d i n g  D iv i s i b i l i ty, 

Representat ion , and Mod u la r  Ar i th met ic) , Stat ist ics,  and 
Tr igonometry. 

For over 50 years many excel lent exams have been prepared 
by i nd iv iduals throughout o u r  mathematical com m u n ity in the 
hope that a l l  seco ndary school  stu d e nts wi l l  have an 
opportun ity to part ic i pate in these p robl em solv i n g  and 

e n r ich i n g  m ath e m at ics expe r i e nces.  The A m e r i can 

Mathematics Competit ions are intended for everyone from the 
average student at  a typ ical school who enjoys mathematics to 
the very best student at the most special  school . 

Catalog Code: CB7 • 200 pp. , Paperbound,  2006 • ISBN 0-88385-82 1 -5 
List: $43.95 • MAA Member:  $35 .50 

O rder you r  copy today ! 
1 . 800 . 3 3 1 . 1 62 2  • www. maa .o rg 



From the .1\\� 
Ill 

Mathemat i ca l  Assoc i at ion  of Amer i ca 

From Calcu lus to Computers 
Using the Last 200 Years of Mathematics 
H istory in  the C lassroom 
Amy Shei i -Gel lasch & Richard Jardine 
Using the h i story of mathematics enhances the 
teac h i ng and learn ing  of mathematics. To date , 
much of the l ite ratu re p repared on the topic of 
i ntegrat ing mathematics h i story in u ndergrad uate 
teach ing  conta ins ,  p redo m i nantly, ideas from the 
1 8th centu ry and earl ie r. This vol u m e  focuses on 
1 9th and 20th centu ry mathematics,  bu i ld i n g  on 
the ear l ier efforts but emphas iz ing recent h i story 
in the teach ing  of mathematics, com puter science, 
and re lated d isci p l i nes. 

From Calcul us to Computers is  a resou rce for 
u nderg rad uate teachers that p rovide ideas and 
mater ia ls for i m mediate adopt ion in the c lassroom 
and p roven exam ples to motivate i n novation by 

the reade r. Contr ibut ions to th is  vol u m e  are from h i storians of mathematics 
and col l ege math emat ics i nstructors with years of expe r i ence and 
expertise i n  these subjects . Among the topics i nc luded are :  

• p rojects with s i g n i f icant h i sto r ical  content successfu l ly used i n  a 
nume rical analysis cou rse 

• a d i scuss ion of the ro le  of proba b i l i ty i n  unde rg rad uate stat istics 
cou rses 

• i nteg ration of the h i sto ry of mathemat ics in u ndergrad uate geometry 
instruction ,  to i ncl ude non- Eucl idean geometries 

• the evo lut ion of mathematics ed ucat ion and teacher preparat ion ove r the 
past two centu r ies,  

• the use of a sem i na l  paper by Cayley to motivate student lea r n i n g  in an 
abstract algebra cou rse 

• the i nteg ration of the h i sto ry of log ic and p rogram m i n g  i nto computer 
sc ience cou rses 

• ideas on how to i m plement h isto ry i nto any class and how to develop 
h istory of mathematics cou rses . 

O rder  you r  copy today !  
1 . 800 . 33 1 . 1 622 • www. maa . o rg 



From the 
M athemat i ca l  Assoc i at i o n  of Amer i ca 

: · · · Rea l i ty Co nd i t i on s · Short Mathemat i ca l  F i ct i on.....C• :  
: Alex Kasman 
• 
• 
• 
• 
• 
• 

• 

. . .  hear a n  old ma n i n  a nurs i n g  home tel l  of 
how he d i sproved Goldbach ' s  Conjectu re 
a s  pa rt of an undergra d u ate resea rch 
project? 

. . . get ins ide the m i nd of J a mes Clerk 
M a xwe l l  a s  he d i scovers e l ectro
magnetic waves? 

. . .  witness the 1 9th centu ry's greatest 
mathematic ian fi na l ly get the cred it she 
wa s denied by sexism a nd murder? 

I n  Rea l i ty Cond itions , a col l ect ion of 
short stories spa n n i n g  a vari ety of gen res,  
you can share in these and other  fictiona l  
mathemat ica l  experiences . Each story is 
a math emat ica l  j o u rney d es i g n ed to 
enterta i n ,  ed ucate and tanta l ize . 

There is someth ing here for everyone:  h u mo r  to d rama,  the 
l itt le  deta i l s  to the big p icture ,  science fict ion to true h istories.  Through 
these stories ,  those with l i tt le mathematica l  background wi l l  encou nter 
some of the most i nterest ing parts of the fie ld of mathematics for the fi rst 
t ime . But eve n professional  mathematic ians wi l l  be captivated by ideas 
that ta ke us to the l i m i ts of knowledge ,  a d d ress ing  the q u estions of how 
mathematics i s  re lated to the h u ma n  m i nd and how it i s  re lated to rea l ity. 

The book is perfect for le isure read i n g ,  but it is a l so wel l  su ited for use at 
schools and u n iversit ies.  Teachers i n  trad it iona l  math cou rses ca n select 
i nd ivid ua l  sto ries to the i r  students . Or, with the g rowing impo rtance of 
i nterd iscip l inary cou rses a n d  quantitative l i teracy across the curr icu l u m ,  the 

• ent ire book cou ld help to form the basis for a creative cou rse on 
• " Mathematics i n  F i ction" . 
• 
• 
• 
• 
• 
• 
• 
• 

Spectru m • Cata log Code : RCO • 260 pp . ,  Paperbound , 2005 • I S B N :  0-88385-552-6 
List: $29 .9 .5  • MAA Member:  $34 .95 

: . • • • • • • • ....... Order your  copy today !  • • • • • • • • • • • •  

1 . 800 . 33 1 . 1 622  • www. maa . org 

• 



New from the 
Mathemat i ca l Assoc i at ion  of  Amer i ca 

"� �· Claloroo"' . 

Rea\ \nnn\te senes 
Rea l I nfi n ite Series 

D a n i e l  B .  Bonar 

M ichael  Khou ry, J r. 

''This is a great resource of concepts and 
challenging problems that is useful for 
teaching and exploring infinite series at 
any level, in calculus, in analysis, or as 
preparation for the Putnam Examination."  
- Davi d  M B resso u d ,  DeWitt Wa l l ace 
P rofessor, Maca/ester College 

This  is a widely accessib le  i ntroductory 
treatment  of i n f i n i te ser ies  of rea l 
n u m be rs , b r i n g i n g  the reade r  from 
bas ic  def i n i t i o n s  and tests to 
advanced resu lts . An up-to-date 

p resentat i o n  is g i ve n ,  m a k i n g  i nf i n ite 
series access ib le ,  i nteresti n g ,  and usefu l to a wide 

audience,  i n c l u d i n g  students, teachers ,  and researchers.  

Real Inf in ite Series p resents the theory of real  i nf in ite ser ies,  i nc l u d i n g  
e lementary and advanced tests for convergence or  d ive rgence,  t h e  
harmonic ser ies,  the alternatin g  harmon ic  ser ies,  a n d  closely re lated 
resu lts. One chapter offe rs 1 07 concise,  cr isp,  surpr is ing resu lts about 
i nf in ite series. Recog n iz i n g  the i nterest i n  p roblem solv ing that abounds 
with  students of  mathematics,  the authors devote a chapter to p roblems on 
inf i n ite ser ies ,  and solut ions,  which have appeared on the annual  Wi l l iam 
Lowel l  P utnam Mathematical Competit ion . 

· 

The l i g hter s ide of i nf in ite ser ies is t reated i n  the concl u d i n g  chapte r where 
th ree puzzles,  e ighteen v isuals (what Mart in  Gard n e r  cal l s  " look-see" 
d iagrams) , and seve ra l fa l l ac ious p roofs a re made avai lab le .  

Three appendices p rovide a l ist ing  of  true o r  fa lse statements, answers to 
why the harmonic ser ies is so named , and an extensive l i st of publ ished 
works devoted ent i re ly  or  part ia l ly  to i nf in ite ser ies.  

Classroom Resource Materials 
Catalog Code: RIS • 272 pp. , Paperbound,  2006 • I S B N -0-88385-745-6 

List: $5 1 . 95 • MAA Member:  $4 1 . 95 



C O N T E N T S 

A RT I C L E S  

3 A Bent  for Mag i c ,  by Pa ul C Pastes 
1 4  Pack i ng Boxes w ith  B r icb,  by Richard /. Bower and 1. S. iv1ichae/ 
3 1  A .1\i ew MouPI tor R ibbon �  l fl , by JiJm Farmer 

N OTES 

4 4  P roof Without Words :  Ewrv � u u rth Pm<ver G reater than One I s  the S u m  
o f  Two Nonconsec ut ive Tr i ;mgu lar  N u m bers, b y  Roger B .  Nelsen 

4 S  Another Step F u rther . . .  O n  a Prob lem of the 1 988 I MO, by Istvan C. Lwk6, 
Gabriella A. PintE;r, and Lajos PintPr 

5 3  Proof Without  Words:  PadoJ 's I nequ a l i ty, b y  Roger B .  Nelsen 

5 4  The C ross Ratio /s the Rat io o f  C ross Prod uct� ! ,  b y  L eah WrPnn Berman 
Cordon Jan William:., and Bradley james Molnar 

60 Proof Without Words:  Right Tr i a n g l es and Geometr ic  Ser ies, 
by Roger B. Nelsen 

6 1  The E u l e r-Mac l a u r i n  For m u l a  and S u m s  o f  Powers, by Michael Z. Spivey 

65 P roof Without  Words:  I n c l us ion-Exc l u s i o n  tor Tr iangu l a r  /\; u m be rs, 
by Roger B. Nelsen 

66 D i sj o i nt Pa i rs wi th  D i st i nct S u m s, bv Gerhard }. Woeginger 

P RO B L EMS 

6 7  Proposa l s  1 7 3 6 - 1  7 4 0  
68 Q u i ck ies 9 5 7 -958 

68 So l ut i o n s  1 7 1 1 -1 7 1 5  

73 A nswers 9 5 7 -9 5 8  

7 4 Poem :  The E i ghtfo l d  Way, L i P  A lgebra, a n d  Sp i der H u nt i n g  i n  the Dark ,  
by }. D. Memory 

REVI EWS 

75 

N EWS A N D  L ETTE RS 

76 66th A n n u a l  Wi l l iam Lowel l Putnam Mathemat ica l  Compet i t ion 


	A Bent for Magic (Paul C. Pasles)
	Packing Boxes with Bricks (Richard J. Bower, T. S. Michael)
	Don't Let Them Know It's Math (Leslie Hayes)
	A New Model for Ribbons in R3 (Tom Farmer)
	Proof Without Words: Every Fourth Power Greater than One is the Sum of Two Nonconsecutive Triangular Numbers (Roger B. Nelsen)
	Another Step Further... On a Problem of the 1988 IMO (Istvan G. Lauko, Gabriella A. Pinter, Lajos Pinter)
	Proof Without Words: Padoa's Inequality [Alessandro Padoa, 1868—1937] (Roger B. Nelsen)
	The Cross Ratio is the Ratio of Cross Products! (Leah Wrenn Berman, Gordon Ian Williams, Bradley James Molnar)
	Proof Without Words: Right Triangles and Geometric Series (Roger B. Nelsen)
	The Euler-Maclaurin Formula and Sums of Powers (Michael Z. Spivey)
	Proof Without Words: Inclusion-Exclusion for Triangular Numbers (Roger B. Nelsen)
	Disjoint Pairs with Distinct Sums (Gerhard J. Woeginger)
	Problems (Elhin H. Johnston)
	Proposals
	Quickies
	Solutions
	Similarity and the Centroid
	Sum and Product of Units
	Inverse Binomial Sum
	A Lower Bound
	What Did You Expect?

	Answers

	The Eightfold Way!, Lie Algebra, and Spider Hunting in the Dark (J. D. Memory)
	Reviews (Paul J. Campbell)
	"Numb3rs" Television series on CBS

	66th Annual William Lowell Putnam Mathematical Competition

